工程力学 ›› 2019, Vol. 36 ›› Issue (1): 238-247,256.doi: 10.6052/j.issn.1000-4750.2017.10.0779

• 其他工程学科 • 上一篇    下一篇

水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性

李海涛, 张振华, 牟金磊, 刘丽滨   

  1. 海军工程大学舰船与海洋学院, 湖北, 武汉 430033
  • 收稿日期:2017-10-16 修回日期:2018-03-06 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 李海涛(1979-),男,湖北武汉人,副教授,博士,从事船舶抗爆抗冲击理论及实验技术研究(E-mail:navy_lht@163.com). E-mail:navy_lht@163.com
  • 作者简介:张振华(1976-),男,湖北武汉人,副教授,博士后,从事船舶抗爆抗冲击防护技术研究(E-mail:2zsz@163.com);牟金磊(1980-),男,山东寿光人,讲师,博士,从事船舶抗爆抗冲击技术研究(E-mail:mjl1007@163.com);刘丽滨(1993-),男,山东滨州人,硕士生,从事船舶抗爆抗冲击实验技术研究(E-mail:hit_llbin@163.com).
  • 基金资助:
    国家自然科学基金项目(51679244)

HYDRO-ELASTIC-PLASTIC DYNAMIC RESPONSE OF A SHIP HULL GIRDER SUBJECTED TO UNDERWATER EXPLOSION: A SIMPLIFIED THEORETICAL MODEL

LI Hai-tao, ZHANG Zhen-hua, MOU Jin-lei, LIU Li-bin   

  1. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China
  • Received:2017-10-16 Revised:2018-03-06 Online:2019-01-29 Published:2019-01-10

摘要: 针对水下爆炸作用下舰船整体运动响应的理论预报问题,将船体结构简化为等截面直梁,以炸药在船体梁中部正下方爆炸工况为研究对象,将水下爆炸载荷压力曲线划分为5个典型阶段,建立了冲击波和气泡联合作用下船体梁整体运动的简化理论模型,分别研究了船体梁全弹性和弹塑性运动模式,特别分析了梁进入塑性运动后反复加载、卸载的响应过程,最后结合船体梁模型水下爆炸实验结果对该理论方法进行了验证,同时对比分析了爆距、梁长等参数变化对梁整体运动响应的一般影响特性。研究表明:所建立的水下爆炸作用下船体梁整体运动响应理论模型能够反映船体梁发生整体弹性和塑性运动时的响应特征;当水下爆炸近距发生于梁中部正下方,且爆炸气泡第一次脉动频率与梁一阶湿频率相近时,船体梁更容易发生整体中垂损伤。

关键词: 爆炸力学, 理论模型, 总体损伤, 船体梁, 冲击波, 气泡脉动

Abstract: A simplified theoretical model to predict the dynamic response of a warship's hull girder subjected to underwater explosion is investigated and presented. In the model, the hull girder is simplified as a uniform ship-like beam and TNT charge is located under the mid-span of the beam. The pressure curve of explosion load is divided into five stages, and the pressure distribution functions are deduced from the wall-pressure characteristics of shock waves and following bubble oscillations. The characteristics of the beam's pure elastic and elastic-plastic motion are analyzed, including the process of loading and unloading repeatedly in plastic deformation, and the influence of variable parameters, such as stand-off and beam's length. Finally, a ship-like beam was used in the experiment to verify the method. The results show that the experimental data basically agrees with those of theoretical analysis. The theoretical method can reasonably capture the essential motion features, such as response cycle and deformation amplitude. When the underwater non-contact explosion occurs closely below the hull girder's center, and the first pulse frequency of the bubble is equivalent to the first-order natural wet frequency of the girder, sagging damage will occur easily.

Key words: explosion mechanics, theoretical model, bulk damage, hull girder, blast, bubble oscillation

中图分类号: 

  • O383
[1] Li Yujie, Pan Jianqiang, Li Guohua, et al. Experimental study of ship whipping induced by underwater explosion bubble[J]. Journal of Ship Mechanics, 2001, 5(6):75-83.
[2] Vernon, T A. Whipping response of rhip hulls from underwater explosion bubble loading[R]. AD-A178096, 1986.
[3] Stettler J W. Damping mechanisms and their effects on the whipping response of a submerged submarine subjected to an underwater explosion[R]. Lehigh University, 1983.
[4] Chen Y, Tong Z P, Hua H X, et al. Experimental investigation on the dynamic response of scaled ship model with rubber sandwich coatings subjected to underwater explosion[J]. International Journal of Impact Engineering, 2009, 36:318-328.
[5] Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. Journal of Fluids and Structures, 2005, 20:359-372.
[6] Zhang N, Zong Z. Hydro-elastic-plastic dynamic response of a ship hull girder subjected to an underwater bubble[J]. Marine Structures, 2012, 29:177-197.
[7] Zhang A M, Yao X L, Li J. The interaction of an underwater explosion bubble and an elastic-plastic structure[J]. Applied Ocean Research, 2008, 30(3):159-171.
[8] Zong Z, Zhao Y J, Li H T. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock. Marine Structures, 2013, 31:24-43.
[9] Wang H, Zhu X, Cheng Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse[J]. Marine Structures, 2014, 39:90-117.
[10] 李海涛, 朱石坚, 刁爱民, 等. 水下爆炸气泡作用下梁中垂损伤及流场变化特性. 高压物理学报, 2012, 26(5):494-500. Li Haitao, Zhu Shijian, Diao Aimin, et al. Characteristics of flow-field an sagging damage of fee-free beam subjected to underwater explosion bubbles[J]. Chinese Journal of High Pressure Physics, 2012, 26(5):494-500. (in Chinese)
[11] 李海涛, 朱锡, 赵小龙, 等. 箱形梁在水下近距非接触爆炸作用下的整体毁伤研究. 振动与冲击, 2010, 29(3):158-161. Li Haitao, Zhu Xi, Zhao Xiaolong, et al. Study on damage mode of box-like beam as a whole subjected to underwater non-contact explosion located closely[J]. Journal of vibration and shock, 2010, 29(3):158-161. (in Chinese)
[12] Zhang Z H, Wang Y X, Zhao H F, et al. An experimental study on the dynamic response of a hull girder subjected to near field underwater explosion[J]. Marine Structures, 2015, 44:43-60.
[13] Yu T X, Yang J L, Reid S R. Dynamic behavior of elastic-plastic free-free beams subjected to impulsive loading[J]. International Journal of Solids Structures, 1996, 33(18):2659-2680.
[14] 张振华, 汪玉. 近距水爆冲击波对船体梁总体毁伤的"刀锋效应". 中国科学:物理学力学天文学, 2015, 48(5):43-60. Zhang, Zhenhua, Wang Yu. "Blade effect" on the overall damage of hull girder caused by near field UNDEX shock wave[J]. SCIEN TIA SINICA Physica, Mechanica& Astronomica, 2015, 48(5):43-60. (in Chinese)
[15] 李海涛, 朱锡, 张振华. 水下爆炸球面冲击波作用下船体梁的刚塑性动响应特性. 工程力学, 2010, 27(10):202-207. Li Haitao, Zhu Xi, Zhang Zhenhua. Dynamic rigid-plastic response of ship-like beam subjected to underwater spherical shockwaves[J]. Engineering Mechanics, 2010, 27(10):202-207. (in Chinese)
[16] Zamyshlyayev B V. Dynamic loads in underwater explosion[R]. Washington D C:Naval Intelligence Support Center, 1973.
[17] Zhang Zhenhua, Wang Yu, Zhang Lijun, etal. Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion[J]. Applied Mathematics and Mechanics, 2011, 32(12):1491-1504.
[18] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究[J]. 工程力学, 2014, 31(8):46-52. Li Xiaojie, Zhang Chengjiao, Wang Xiaohong, et al. Numerical study on the effect of equations of state of water on underwater explosions[J]. Engineering Mechanics, 2014, 31(8):46-52. (in Chinese)
[19] 刁爱民, 李海涛. 水下爆炸作用下船体梁整体运动简化理论模型[J]. 华中科技大学学报(自然科学版), 2016, 44(6):63-67. Diao Aimin, Li Haitao. Simplified theoretical model for bulk movement of hull girder subjected to underwater explosion[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(6):63-67. (in Chinese)
[20] 刘巨斌, 李海涛, 王俊森. 水面无限平板下方球状爆炸气泡流场压力特性. 华中科技大学学报(自然科学版), 2013, 41(4):119-122. Liu Jubin, Li Haitao, Wang Junsen. Characteristics of flow-field pressure of spherical explosion bubbles under an infinite plate floating on water[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(4):119-122. (in Chinese)
[21] 刘巨斌, 李海涛. 水面平板下方非球状爆炸气泡运动数值模拟[J]. 海军工程大学学报, 2015, 27(2):6-9. Liu Jubin, Li Haitao. Numerical simulation of non-spherical explosion bubble motion below plate floating on water[J]. Journal of Naval University of Engineering, 2015, 27(2):6-9. (in Chinese)
[22] Hsu C Y, Liang C C, Nguyen A T, et al. A numerical study on the underwater explosion bubble pulsation and the collapse process[J]. Ocean Engineering, 2014, 81:29-38.
[1] 胡雄玉, 何川, 杨清浩, 吴迪. 管片衬砌配合陶粒可压缩层的支护结构与围岩相互作用模型[J]. 工程力学, 2018, 35(3): 86-95.
[2] 耿少波, 刘亚玲, 薛建英. 钢箱梁缩尺模型爆炸冲击波作用下破坏实验研究[J]. 工程力学, 2017, 34(增刊): 84-88.
[3] 朱力, 聂建国, 季文玉. 钢-混凝土组合箱型梁的滑移和剪力滞效应[J]. 工程力学, 2016, 33(9): 49-58,68.
[4] 孙其然, 李芮宇, 赵亚运, 孙宇新. HJC模型模拟钢筋混凝土侵彻实验的参数研究[J]. 工程力学, 2016, 33(8): 248-256.
[5] 年鑫哲,张耀,孙传怀,王浩州,严东晋. 空气冲击波作用于柔性防爆墙的透射和绕射效应分析[J]. 工程力学, 2015, 32(3): 241-248,256.
[6] 张秀华, 王钧, 赵金友, 吴燕燕. 室内燃气爆炸冲击波的特性及传播规律[J]. 工程力学, 2014, 31(增刊): 258-264.
[7] 李晓杰, 张程娇, 王小红, 闫鸿浩. 水的状态方程对水下爆炸影响的研究[J]. 工程力学, 2014, 31(8): 46-52.
[8] 张秀华,吴燕燕,李玉顺. 室内燃气爆炸作用下钢框架结构动力响应分析[J]. 工程力学, 2013, 30(增刊): 358-362.
[9] 杨刚,梁超,刘平,胡德安. 基于三维FE-SPH自适应耦合算法的子弹侵彻混凝土靶跳飞问题模拟[J]. 工程力学, 2013, 30(9): 276-282.
[10] 陈忠购,赵石娆,张正威. 内置并联U形埋管能量桩的换热性能研究[J]. 工程力学, 2013, 30(5): 238-243.
[11] 张 伟,韩 旭,刘 杰,杨 刚. 一种基于正交试验设计的土中爆炸数值模型确认方法[J]. 工程力学, 2013, 30(3): 58-65.
[12] 高康华,王明洋. 化爆冲击波作用下建筑物内压缩波参数计算[J]. 工程力学, 2012, 29(7): 172-179.
[13] 施刚;袁锋;霍达;石永久;王元清. 钢框架梁柱节点转角理论模型和测量计算方法[J]. 工程力学, 2012, 29(2): 52-60.
[14] 李鑫;吴桂英;贾昊凯. 挡墙对爆炸冲击波传播影响的数值模拟[J]. 工程力学, 2012, 29(2): 245-250.
[15] 熊益波;陈剑杰;胡永乐;王万鹏. 混凝土Johnson-Holmquist 本构模型关键参数研究[J]. 工程力学, 2012, 29(1): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日