工程力学 ›› 2019, Vol. 36 ›› Issue (4): 62-71,99.doi: 10.6052/j.issn.1000-4750.2017.10.0760

• 土木工程学科 • 上一篇    下一篇

深部复合地层管片衬砌与可压缩层联合支护技术研究

齐春1, 何川2, 封坤2, 彭祖昭2, 汤印1, 代聪2   

  1. 1. 中铁二院工程集团有限责任公司, 四川, 成都 610031;
    2. 西南交通大学交通隧道工程教育部重点实验室, 四川, 成都 610031
  • 收稿日期:2017-10-11 修回日期:2019-01-02 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 封坤(1983-),男,陕西人,副教授,博士,硕导,主要从事隧道与地下工程方面的教学和研究工作(E-mail:windfeng813@163.com). E-mail:windfeng813@163.com
  • 作者简介:齐春(1988-),男,河南人,博士,主要从事隧道与地下工程方面的设计与研究工作(E-mail:qichun0304@126.com);何川(1964-),男,重庆人,教授,博士,博导,主要从事隧道与地下工程方面的教学和研究工作(E-mail:chuanhe21@163.com);彭祖昭(1993-),男,广东人,硕士生,主要从事隧道与地下工程方面的研究工作(E-mail:1101091692@qq.com);汤印(1991-),男,四川人,硕士,主要从事隧道与地下工程方面的设计与研究工作(E-mail:1530398460@qq.com);代聪(1988-),男,山东人,博士,主要从事隧道与地下工程方面的研究工作(E-mail:dc_526@163.com).
  • 基金资助:
    国家重点研发计划项目(2016YFC0802202);国家自然科学基金项目(51878569,51578462,U1361210)

STUDY ON THE EFFECTS OF COMBINED SUPPORTS OF SEGMENTAL LININGS AND COMPRESSIBLE LAYERS IN DEEP-BURIED COMPOSITE GROUND

QI Chun1, HE Chuan2, FENG Kun2, PENG Zu-zhao2, TANG Yin1, DAI Cong2   

  1. 1. China Railway Eryuan Engineering Group Co., Ltd, Chengdu, Sichuan 610031, China;
    2. MOE Key Laboratory of Transportation Tunnel Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2017-10-11 Revised:2019-01-02 Online:2019-04-25 Published:2019-04-15

摘要: 深埋盾构隧道所受围岩压力主要为围岩挤压型大变形产生的形变压力,其主要特点是变形持续时间长且具有重复性,支护完成后围岩压力仍将持续增大,企图通过增加支护刚度来抑制围岩变形是不现实的,采用让压支护是解决问题的一个方向。同时,深部围岩赋存条件复杂,岩体结构复杂多变,盾构隧道穿越复合地层不可避免。以国内两座大埋深盾构煤矿斜井为背景,采用相似模型试验和有限元数值计算手段,对比分析不同复合地层条件下管片衬砌+可压缩层联合支护时管片衬砌的力学性能。研究结果表明:在模型正确建立且参数取值合理的前提下,有限元数值计算结果可以和相似模型试验结果很好的吻合。均一地层条件下可压缩层可使管片最大弯矩减小12.5%~19.9%,最大轴力减小14.2%。复合地层使管片弯矩量值和分布均产生明显变化,但对管片轴力的影响则不明显,管片弯矩对复合地层抗力更为敏感,而轴力对复合地层抗力不敏感。有可压缩层情况下,复合地层中管片内力分布更加均匀,轴力的变化不明显。复合地层相对厚度对管片最大正弯矩的影响较为稳定,对管片最大负弯矩影响显著,使其产生位置偏向相对较软一侧的地层,且相对厚度越大偏移越明显。"上硬下软"复合地层中管片弯矩更容易受地层相对刚度的影响。

关键词: 盾构(TBM)工法, 模型试验, 复合地层, 管片衬砌, 可压缩层, 让压支护

Abstract: The surrounding rock pressure of deep buried shield tunnels is mainly the deformation pressure produced by large extrusion type deformation of the surrounding rock. Its main feature is that the deformation lasts for a long time with repeatability. The pressure of the surrounding rock will keep increasing after the support is completed. Because it is unfeasible to restrain the deformation of surrounding rock by increasing the support rigidity, yieldable supports become a solution for the problem. Meanwhile, due to the complexity and variability of the surrounding rock condition and the rock mass structure, it is inevitable to pass through composite strata in shield tunnel construction. Based on the inclined shafts in two deep buried shield coal mines, comparison and analysis on the mechanical properties of segment linings with the segment lining + compressible layer combined supports in different composite stratum conditions are studied by means of similarity model tests and the finite element numerical method. The results indicate that the finite element method results are in good agreement with the experimental results when the model is correctly established and the parameter values are reasonable. Under the uniform formation condition, the compressible layer brings about 12.5%~19.9% decrease to the maximum bending moment and 14.2% decrease to the maximum axial force. The composite stratum causes obvious changes in the value and distribution of the segment bending moment, but has little effect on the segmental axial force, indicating that the bending moment is more sensitive to the resistance of the composite stratum while the axial force is relatively insensitive. With the compressible layer, the distribution of the segment internal force is more uniform in the composite stratum and there is little change in the axial force. Furthermore, the relative thickness of the composite stratum influences the maximum positive bending moment stably. It also greatly influences the maximum negative bending moment, causing deviation to the relative soft side of its generating position. The larger the relative thickness of the composite stratrum, the more obvious is the deviation. In an upper hard and lower soft composite stratum, the segment bending moment is more easily affected by the relative stiffness of the stratum.

Key words: shield (TBM) construction, model test, composite stratum, segmental lining, compressible layer, yieldable support

中图分类号: 

  • TD262
[1] 何川. 盾构/TBM施工煤矿长距离斜井的技术挑战与展望[J]. 隧道建设, 2014, 34(4):287-297. HE Chuan. Challenges and prospective of construction of long-distance inclined shafts of coal mine by shield/TBM[J]. Tunnel Construction, 2014, 34(4):287-297. (in Chinese)
[2] 刘泉声, 黄兴, 刘建平, 等. 深部复合地层围岩与TBM的相互作用及安全控制[J]. 煤炭学报, 2015, 40(6):1213-1224. Liu Quansheng, Huang Xing, Liu Jianping, et al. Interaction and safety control between TBM and deep mixed ground[J]. Journal of China Coal Society, 2015, 40(6):1213-1224. (in Chinese)
[3] 王俊奇, 何本国, 张有天, 等. 深埋隧道轴线合理布置与衬砌结构稳定性研究[J]. 工程力学, 2015, 32(12):188-197. Wang Junqi, He Benguo, Zhang Youtian, et al. Study on the axis orientation and stability of linings for deep tunnels[J]. Engineering Mechanics, 2015, 32(12):188-197. (in Chinese)
[4] Yu Yang, Bai Jianbo, Wang Xiangyu, et al. High-resistance controlled yielding supporting technique in deep-well oil shale roadways[J]. International Journal of Mining Science and Technology, 2014, 24(2):229-236.
[5] 袁亮. 深井巷道围岩控制理论及淮南矿区工程实践[M]. 北京:煤炭工业出版社, 2006. Yuan Liang. Control of surrounding strata in deep mine roadways and practice in Huainan area[M]. Beijing:China Coal Industry Publishing House, 2006. (in Chinese)
[6] 赵玉东. 挤压型大变形地下硐室中支护型式的适宜性研究[D]. 成都:西南交通大学, 2016. Zhao Yudong. Research on suitability of supporting types for large deformation underground chamber in squeezing ground[D]. Chengdu:Southwest Jiaotong University, 2016. (in Chinese)
[7] 孙闯, 张向东, 张建俊. 深部断层破碎带竖井围岩与支护系统稳定性分析[J]. 煤炭学报, 2013, 38(4):2282-2292. Sun Chuang, Zhang Xiangdong, Zhang Jianjun. Stability analysis of vertical shaft surrounding rock and supporting system in deep fault fracture[J]. Journal of China Coal Society, 2013, 38(4):2282-2292. (in Chinese)
[8] 牛双建, 靖洪文, 张忠宇, 等. 深部软岩巷道围岩稳定控制技术研究及应用[J]. 煤炭学报, 2011, 36(4):914-920. Niu Shuangjian, Jing Hongwen, Zhang Zhongyu, et al. Study on control technology of surrounding rocks in deep soft roadway and its application[J]. Journal of China Coal Society, 2011, 36(4):914-920. (in Chinese)
[9] 王卫军, 彭刚, 黄俊. 高应力极软破碎岩层巷道高强度耦合支护技术研究[J]. 煤炭学报, 2011, 22(2):223-229. Wang Weijun, Peng Gang, Huang Jun. Research on high-strength coupling support technology of high stress extremely soft rock roadway[J]. Journal of China Coal Society, 2011, 22(2):223-229. (in Chinese)
[10] Ramoni M, Anagnostou G. Tunnel boring machines under squeezing conditions[J]. Tunneling and Underground Space Technology, 2010, 25(2):139-157.
[11] Cantieni L, Anagnostou G. The interaction between yielding supports and squeezing ground[J]. Tunneling and Underground Space Technology, 2009, 24(3):309-322.
[12] 胡雄玉, 晏启祥, 何川, 等. 管片衬砌配合碎石可压缩层的斜井支护结构型式及其应用[J]. 岩石力学与工程学报, 2016, 35(3):579-591. Hu Xiongyu, Yan Qixiang, He Chuan, et al. A support structure of segment lining combined with compressible crushed stone and its applications in inclined shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3):579-591. (in Chinese)
[13] 竺维彬, 鞠世健. 复合地层中的盾构施工技术[M]. 北京:中国科学技术出版社, 2006. Zhu Weibin, Ju Shijian. Shield tunneling technology in nixed face ground conditions[M]. Beijing:China Science and Technology Press, 2006. (in Chinese)
[14] 何川, 张建刚, 杨征. 层状复合地层条件下管片衬砌结构力学特征模型试验研究[J]. 岩土工程学报, 2008, 30(10):1537-1543. He Chuan, Zhang Jiangang, Yangzheng. Model test on mechanical characteristics of segment lining structure under multi-layered strata[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10):1537-1543. (in Chinese)
[15] 徐国文, 王士民, 汪冬兵. 基于接头抗弯刚度非线性的壳-弹簧-接触-地层模型的建立[J]. 工程力学, 2016, 33(12):158-166. Xu Guowen, Wang Shimin, Wang Dongbing. Shellspring-contact-ground model based on segment joint stiffness nolinearity[J]. Engineering Mechanics, 2016, 33(12):158-166. (in Chinese)
[16] 朱宏海. 上软下硬复合地层地铁盾构隧道设计及施工探析[J]. 隧道建设, 2015, 35(2):144-148. Zhu Honghai. Design and construction of shield-bored metro tunnels in hard-soft heterogeneous ground, 2015, 35(2):144-148. (in Chinese)
[1] 陈海, 郭子雄, 刘阳, 郭利涛. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159-168.
[2] 张陆陈, 王余杰, 骆少泽. 射流簇底流消能旋涡区脉动压力特性研究[J]. 工程力学, 2018, 35(S1): 355-358.
[3] 石吉森, 凌道盛, 徐泽龙, 黄博. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究[J]. 工程力学, 2018, 35(7): 194-207.
[4] 范重, 刘云博, 王祥臻, 吴徽, 王义华. 连梁骨架曲线与滞回特性研究[J]. 工程力学, 2018, 35(6): 68-77,87.
[5] 胡雄玉, 何川, 杨清浩, 吴迪. 管片衬砌配合陶粒可压缩层的支护结构与围岩相互作用模型[J]. 工程力学, 2018, 35(3): 86-95.
[6] 蔡建军, 谢璨, 李树忱, 李术才, 赵世森. 复杂条件下深基坑多层支护方法及数值模拟研究[J]. 工程力学, 2018, 35(2): 188-194.
[7] 陈庆发, 赵富裕, 陈青林, 王玉丁. 基于室内模型试验的多漏斗同步放矿柔性隔离层材料受力特性分析[J]. 工程力学, 2018, 35(11): 240-248.
[8] 黄明, 付俊杰, 陈福全, 江松. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 172-182.
[9] 苏庆田, 林航, 杜霄, 曾明根. 波形钢腹板导梁局部承压的加强构造与试验[J]. 工程力学, 2017, 34(增刊): 78-83.
[10] 乔朋, 狄谨, 秦凤江. 单箱多室波形钢腹板组合箱梁的腹板剪应力分析[J]. 工程力学, 2017, 34(7): 97-107.
[11] 江学良, 牛家永, 连鹏远, 文畅平, 王飞飞. 含小净距隧道岩石边坡地震动力特性的大型振动台试验研究[J]. 工程力学, 2017, 34(5): 132-141,147.
[12] 王成龙, 刘汉龙, 孔纲强, 吴迪. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1): 85-91.
[13] 柳扬清, 刘玉擎, 郑双杰. 肋板间距对开孔板连接件抗剪刚度影响分析[J]. 工程力学, 2016, 33(9): 179-185.
[14] 李奇龙, 牛争鸣, 王捷. 设置阻塞后旋流洞内的增压特性分析[J]. 工程力学, 2016, 33(2): 216-223.
[15] 闫澍旺, 霍知亮, 楚剑, 郭伟. 黏土中负压桶形基础下沉与承载特性试验及有限元分析研究[J]. 工程力学, 2016, 33(1): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日