工程力学 ›› 2019, Vol. 36 ›› Issue (1): 80-87.doi: 10.6052/j.issn.1000-4750.2017.09.0749

• 土木工程学科 • 上一篇    下一篇

高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究

张景钰, 张明金, 李永乐, 房忱, 向活跃   

  1. 西南交通大学桥梁工程系, 四川, 成都 610031
  • 收稿日期:2017-09-30 修回日期:2018-01-09 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 张明金(1984-),男,四川人,助理研究员,博士,主要从事桥梁风工程研究(E-mail:zhang108119@163.com). E-mail:zhang108119@163.com
  • 作者简介:张景钰(1993-),男,四川人,博士生,主要从事桥梁风工程研究(E-mail:zhangjycd@163.com);李永乐(1972-),男,河南人,教授,博士,博导,主要从事桥梁风工程及车桥耦合振动等动力行为研究(E-mail:lele@swjtu.edu.cn);房忱(1991-),男,山东人,博士生,主要从事桥梁风工程研究(E-mail:fangchenwave@163.com);向活跃(1986-),男,重庆人,讲师,博士,主要从事桥梁风工程研究(E-mail:hy@swjtu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(U1334201,51525804,51708464,51408503);四川省创新研究团队项目(2015TD0004)

WIND TUNNEL TEST STUDY ON COMPLEX WIND FIELD AND VEHICLE AERODYNAMIC EFFECTS IN EMBANKMENT-CUTTING TRANSITION ZONE IN HIGH-SPEED RAILWAY

ZHANG Jing-yu, ZHANG Ming-jin, LI Yong-le, FANG Chen, XIANG Huo-yue   

  1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2017-09-30 Revised:2018-01-09 Online:2019-01-29 Published:2019-01-10

摘要: 中国地形地貌复杂多变,线路交替必不可少,为了探究高速铁路路堤-路堑过渡区域的列车气动效应和复杂风场,该文建立了大比例试验模型,采用风洞试验的方法对线路上方不同位置处的风速剖面和线路不同位置处的车辆气动力进行了测试。试验结果表明:路堤-路堑过渡段对气流的影响范围在轨道上方250 mm以内;线路交界处上方较低区域的风剖面由路堑主导,较高区域受路堤主导;风速变化对列车沿线移动的气动力变化趋势影响不大;在过渡区域,线路交界处附近对行车安全最不利,且路堤侧更为不利;受雷诺数效应的影响,气动力系数整体上随风速的增大而减小。

关键词: 高速铁路, 路堤-路堑过渡段, 风洞试验, 列车气动特性, 风剖面

Abstract: The topography and geomorphology are complex and changeable in China, and the railway transition zones are indispensable. In order to investigate the vehicle aerodynamic effects and complex wind field in embankment-cutting transition zone, a large-scale model was established to measure the wind speed profiles above the track and the train aerodynamic forces at different locations along the track by using wind tunnel test. The test results show that the influence height of embankment-cutting transition zone on air flow is less than 250 mm above the track. The wind velocity profile at the lower height of the railway junction is dominated by the cutting while the higher height is dominated by the embankment. Wind speed has little influence on the changing trend of train aerodynamic forces along the track. In the transition zone, the most unfavorable area for traffic safety exists near the junction of the railway, especially at the sides of embankment. The aerodynamic coefficients decrease while the wind speed increases due to the Reynolds number effect.

Key words: high-speed railway, embankment-cutting transition zone, wind tunnel test, vehicle aerodynamic characteristics, wind speed profile

中图分类号: 

  • U213.1+1
[1] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1):1-9. Tian Hongqi. Study evolvement of train aerodynamic in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1):1-9. (in Chinese)
[2] 郭薇薇, 夏禾, 徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006, 23(2):103-110. Guo Weiwei, Xia He, Xu Youlin. Dynamic response of long span suspension bridge and running safety of train under wind action[J]. Engineering Mechanics, 2006, 23(2):103-110. (in Chinese)
[3] 金学松, 郭俊, 肖新标, 等. 高速列车安全运行研究的关键科学问题[J]. 工程力学, 2009, 26(增刊2):8-22, 105. Jin Xuesong, Guo Jun, Xiao Xinbiao, et al. Key scientific problems in the study on running safety of high speed trains[J]. Engineering Mechanics, 2009, 26(Suppl 2):8-22, 105. (in Chinese)
[4] Fujii T, Maeda T, Ishida H, et al. Wind-induced accidents of train/vehicles and their measures in Japan[J]. Quarterly Report of RTRI, 1999, 40(1):50-55.
[5] 丁嘉杰. 强横风环境下高速铁路风速测点合理位置研究[D]. 成都:西南交通大学, 2017. Ding Jiajie. Study on reasonable positions for measurement points of wind speeds under strong crosswind on high-speed railway[D]. Chengdu:Southwest Jiaotong University, 2017. (in Chinese)
[6] 高广军, 田红旗, 姚松, 等. 兰新线强横风对车辆倾覆稳定性的影响[J]. 铁道学报. 2004, 26(4):36-40. Gao Guangjun, Tian Hongqi, Yao Song, et al. Effect of strong cross-wind on the satbility of trains running on the Lanzhou-Xinjiang Railway line[J]. Journal of the China Railway Society, 2004, 26(4):36-40. (in Chinese)
[7] 熊小慧, 梁习锋, 高广军, 等. 兰州-新疆线强侧风作用下车辆的气动特性[J]. 中南大学学报(自然科学版). 2006, 37(6):1183-1188. Xiong Xiaohui, Liang Xifeng, Gao Guangjun, et al. Train aerodynamic characteristics in strong cross wind on Lanzhou-Xinjiang Railway Line[J]. Journal of Central South University (Science and Technology), 2006, 37(6):1183-1188. (in Chinese)
[8] 王少钦, 马骎, 夏禾, 等. 风-列车-大跨度悬索桥系统非线性耦合振动分析[J]. 工程力学, 2016, 33(12):150-157. Wang Shaoqin, Ma Qin, Xia He, et al. Nonlinear dynamic analysis of a wind-train-long-span suspension bridge coupling system[J]. Engineering Mechanics, 2016, 33(12):150-157. (in Chinese)
[9] 李永乐, 董世赋, 臧瑜, 等. 大跨度公轨两用悬索桥风-车-桥耦合振动及抗风行车准则研究[J]. 工程力学, 2012, 29(12):114-120. Li Yongle, Dong Shifu, Zang Yu, et al. Coupling vibration of wind-vehicle-bridge system for long-span road-rail suspension bridge and resistant-wind criterion of running train[J]. Engineering Mechanics, 2012, 29(12):114-120. (in Chinese)
[10] 李永乐, 徐昕宇, 郭建明, 等. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学. 2016, 33(04):130-135. Li Yongle, Xu Xinyu, Guo Jianming, et al. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge[J]. Engineering Mechanics, 2016, 33(04):130-135. (in Chinese)
[11] 梅元贵, 许建林, 赵鹤群, 等. 侧风环境下高速列车外部流场数值模拟方法研究[J]. 工程力学, 2012, 29(6):253-258, 278. Mei Yuangui, Xu Jianlin, Zhao Hequn, et al. A research on numerical method of air flow around the high-speed train under crosswind[J]. Engineering Mechanics, 2012, 29(6):253-258, 278. (in Chinese)
[12] Baker C J. The determination of topographical exposure factors for railway[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1985, 21(1):89-99.
[13] Suzuki M, Tanemoto K, Maeda T. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2):209-218.
[14] Avila-Sanchez S, Pindado S, Lopez-Garcia O, et al. Wind tunnel analysis of the aerodynamic loads on rolling stock over railway embankments:The effect of shelter windbreaks[J]. The Scientific World Journal, 2014, 2014:1-17.
[15] Cheli F, Corradi R, Rocchi D, et al. Wind tunnel tests on train scale models to investigate the effect of infrastructure scenario[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7):353-362.
[16] Cheli F, Giappino S, Rosa L, et al. Experimental study on the aerodynamic forces on railway vehicles in presence of turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123(Part B):311-316.
[17] Bocciolone M, Cheli F, Corradi R, et al. Crosswind action on rail vehicles:Wind tunnel experimental analyses[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(5):584-610.
[18] Tomasini G, Giappino S, Corradi R. Experimental investigation of the effects of embankment scenario on railway vehicle aerodynamic coefficients[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 131:59-71.
[19] Giappino S, Rocchi D, Schito P, et al. Cross wind and rollover risk on lightweight railway vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 153:106-112.
[20] Zhang J, Gao G J, Liu T H, et al. Crosswind stability of high-speed trains in special cuts[J]. Journal of Central South University, 2015, 22(7):2849-2856.
[21] Liu Tanghong, Zhang Jie. Effect of landform on aerodynamic performance of high-speed trains in cutting under cross wind[J]. Journal of Central South University, 2013, 23(3):830-836.
[22] Liu Tanghong, Chen Zhengwei, Zhou Xisai, et al. A CFD analysis of the aerodynamics of a high-speed train passing through a windbreak transition under crosswind[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1):137-151.
[1] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[2] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[3] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[4] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[5] 李小珍, 邱晓为, 刘德军, 秦羽. 时速400 km/h铁路常用跨度预应力混凝土简支梁竖向基频限值研究[J]. 工程力学, 2018, 35(5): 204-213.
[6] 魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51.
[7] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[8] 王骑, 李郁林, 李志国, 廖海黎. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10): 10-16.
[9] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211.
[10] 王晓江, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 四心圆煤棚风荷载分布规律的试验研究[J]. 工程力学, 2017, 34(增刊): 59-62.
[11] 岳光强, 马文勇, 刘庆宽, 刘小兵. 风向角对方形断面细长结构气动力特性的影响[J]. 工程力学, 2017, 34(增刊): 5-10.
[12] 李少杰, 刘小兵, 杨群, 刘庆宽, 马文勇. 分离双扁平箱梁气动力干扰效应研究[J]. 工程力学, 2017, 34(增刊): 89-93.
[13] 郑云飞, 刘庆宽, 刘小兵, 马文勇. 端部状态对斜拉索节段模型气动特性的影响[J]. 工程力学, 2017, 34(增刊): 192-196.
[14] 卢照亮, 刘晓玲, 郑云飞, 刘庆宽, 马文勇, 刘小兵. 斜拉索表面粗糙度对干索驰振的影响[J]. 工程力学, 2017, 34(增刊): 174-178.
[15] 田凯强, 秦其伟, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 大型冷却塔表面风压分布特性的试验研究[J]. 工程力学, 2017, 34(增刊): 269-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日