工程力学 ›› 2019, Vol. 36 ›› Issue (2): 66-77.doi: 10.6052/j.issn.1000-4750.2017.09.0734

• 土木工程学科 • 上一篇    下一篇

基于统计损伤理论的硫酸盐侵蚀混凝土本构模型研究

白卫峰1, 刘霖艾2, 管俊峰2, 姚贤华2   

  1. 1. 华北水利水电大学水利学院, 河南, 郑州 450046;
    2. 华北水利水电大学土木与交通学院, 河南, 郑州 450046
  • 收稿日期:2017-09-23 修回日期:2018-03-14 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 白卫峰(1982-),男,河南人,副教授,博士,硕导,主要从事混凝土损伤力学研究(E-mail:yf9906@163.com). E-mail:yf9906@163.com
  • 作者简介:刘霖艾(1992-),女,山东人,硕士生,主要从事混凝土损伤力学研究(E-mail:270096126@qq.com);管俊峰(1980-),男,河南人,副教授,博士,硕导,主要从事混凝土断裂力学研究(E-mail:shuaipipi88@126.com);姚贤华(1976-),男,河南人,实验师,博士,主要从事混凝土断裂力学实验研究(E-mail:yaoxianhua@ncwu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51679092,51779095);郑州市科技攻关项目(153PKJGG109,153PKJGG111);华北水利水电大学研究生创新项目(YK2017-17)

THE CONSTITUTIVE MODEL OF CONCRETE SUBJECTED TO SULFATE ATTACK BASED ON STATISTICAL DAMAGE THEORY

BAI Wei-feng1, LIU Lin-ai2, GUAN Jun-feng2, YAO Xian-hua2   

  1. 1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, He'nan 450046, China;
    2. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, He'nan 450046, China
  • Received:2017-09-23 Revised:2018-03-14 Online:2019-02-22 Published:2019-02-22

摘要: 基于统计损伤理论及宏观试验现象,该文建立了考虑硫酸盐侵蚀影响的混凝土单轴、双轴压缩统计损伤本构模型。混凝土变形破坏被理解为细观断裂、屈服两种损伤模式的连续累积演化过程。硫酸盐侵蚀效应改变了混凝土微结构的组成成分和力学特征,进而改变了微裂纹萌生、扩展的形态以及损伤的累积演化过程,可通过改变断裂和屈服两种细观损伤机制演化过程的概率分布形态来模拟。分析结果表明:在硫酸盐侵蚀环境下,侵蚀程度的加深显著改变了混凝土细观损伤累积演化过程,最终导致混凝土宏观力学性能呈现先“强化”后“弱化”的现象。在此过程中,细观损伤演化过程呈现出明显地规律性,可由统计损伤模型中5个特征参数的变化规律表征。该文模型为复杂环境下侵蚀混凝土细观损伤过程预测和分析提供了新的方法和工具。

关键词: 混凝土, 单轴压缩, 损伤机制, 本构模型, 硫酸盐侵蚀

Abstract: Based on the statistical damage theory and the test phenomenon, a statistical damage model for concrete under uniaxial and biaxial compression is proposed to consider the impact of sulphate attack. The deformation and failure of concrete is regarded as the continuous accumulation evolution of the two meso-damage modes, i.e., rupture and yield. Sulfate erosion effect changes the component and mechanical characteristics in the microstructure of concrete, and then changes the initiation and propagation process of microcracks. The above effects could be simulated by changing the probability distribution which characterizes the evolution process of the two meso-damage modes. The results show that in the sulphate erosion environment, the meso-damage cumulative evolution process would be significantly changed with the deepening of the degree of erosion, and finally causes the macro-mechanical properties of concrete exhibiting the phenomenon of ‘weakening’ after ‘strengthening’. During this process, the law of meso-damage evolution of the concrete shows obvious regularity, and it could be reflected by the five characteristic parameters in the statistical damage model. This paper presents a new method and tool to predict and analyze the damage mechanism of eroded concrete in complex environment.

Key words: concrete, uniaxial compression, damage mechanism, constitutive model, sulfate attack

中图分类号: 

  • TU528.01
[1] 范颖芳, 王大为, 栾海洋. 模拟酸沉降环境混凝土梁承载性能研究[J]. 工程力学, 2014, 31(4):147-154, 177. Fan Yingfang, Wang Dawei, Luan Haiyang. Study on the load carrying capacity of reinforced concrete beams under acid precipitation[J]. Engineering Mechanics, 2014, 31(4):147-154, 177. (in Chinese)
[2] 王海龙, 董宜森, 孙晓燕, 等. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. 浙江大学学报:工学版, 2012, 46(7):1255-1261. Wang Hailong, Dong Yisen, Sun Xiaoyan, et al. Damage mechanism of concrete deteriorated by sulfate attack in wet-dry cycle environment[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(7):1255-1261. (in Chinese)
[3] 李悦, 管忠正, 王鹏. 海洋环境下腐蚀混凝土力学性能研究进展[J]. 武汉理工大学学报, 2015, 37(3):83-89. Li Yue, Guan Zhongzheng, Wang Peng. Recent development on mechanical properties of concrete corrosion in marine environment[J]. Journal of Wuhan University of Technology, 2015, 37(3):83-89. (in Chinese)
[4] 汤海昌. 硫酸盐侵蚀下混凝土的耐久性分析[D]. 南京:南京理工大学, 2008. Tang Haichang. The durability analysis of concrete subjected to sulfate attack[D]. Nanjing:Nanjing University of Science and Technology, 2008. (in Chinese)
[5] 陈钱. 海水侵蚀混凝土的微观及动态性能试验研究[D]. 宁波:宁波大学, 2012. Chen Qian. Experimental study on the micro and dynamic performance of seawater eroded concrete[D]. Ningbo:Ningbo University, 2012. (in Chinese)
[6] 蒋敏强, 陈建康, 杨鼎宜. 硫酸盐侵蚀水泥砂浆动弹性模量的超声检测[J]. 硅酸盐学报, 2005, 33(1):126-132. Jiang Minqiang, Chen Jiankang, Yang Dingyi. Dynamic modulus of cement mortar in sulphate erosion measured by ultrasonic checking[J]. Journal of the Chinese Ceramic Society, 2005, 33(1):126-132. (in Chinese)
[7] 施峰, 汪俊华. 硫酸盐侵蚀混凝土立方体的性能退化[J]. 混凝土, 2013, 281(3):52-54. Shi Feng, Wang Junhua. Performance degradation of concrete cube attacked by sulfate[J]. Concrete, 2013, 281(3):52-54. (in Chinese)
[8] 梁咏宁, 袁迎曙. 硫酸盐腐蚀后混凝土单轴受压应力应变全曲线[J]. 混凝土, 2005, 189(7):59-61. Liang Yongning, Yuan Yingshu. Stress-strain curves under uniaxial compression of sulfate attacked concrete[J]. Concrete, 2005, 189(7):59-61. (in Chinese)
[9] 杜修力, 金浏. 非均质混凝土材料破坏的三维细观数值模拟[J]. 工程力学, 2013, 30(2):82-88. Du Xiuli, Jin Liu. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete[J]. Engineering Mechanics, 2013, 30(2):82-88. (in Chinese)
[10] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9):1-12. Yu Zhiwu, Wu Lingyu, San Zhi. Models for deterministic and stochastic damage constitutions of concrete-A short review[J]. Engineering Mechanics, 2017, 34(9):1-12. (in Chinese)
[11] Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids and Structures, 1982, 18(7):551-562.
[12] Li Jie, Ren Xiaodan. Stochastic damage model for concrete based on energy equivalent strain[J]. International Journal of Solids and Structures, 2009, 46(11):2407-2419.
[13] 白卫峰, 陈健云, 胡志强, 等. 准脆性材料单轴拉伸破坏全过程物理模型研究[J]. 岩石力学与工程学报, 2007, 26(4):670-681. Bai Weifeng, Chen Jianyun, Hu Zhiqiang, et al. Study on physical model of complete failure process of quasi-brittle materials in tension[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4):670-681. (in Chinese)
[14] Bai Weifeng, Chen Jianyun, Lin Gao, et al. The statistical damage constitutive model for concrete materials under uniaxial compression[J]. Journal of Harbin Institute of Technology (New Series), 2010, 17(3):338-344.
[15] 白卫峰, 张树珺, 管俊峰, 等. 混凝土正交各向异性统计损伤本构模型研究[J]. 水利学报, 2014, 45(5):607-618. Bai Weifeng, Zhang Shujun, Guan Junfeng, et al. Orthotropic statistical damage constitutive model for concrete[J]. Journal of Hydraulic Engineering, 2014, 45(5):607-618. (in Chinese)
[16] 白卫峰, 郭磊, 陈守开, 等. 混凝土统计损伤力学[M]. 北京:中国水利水电出版社, 2015. Bai Weifeng, Guo Lei, Chen Shoukai, et al. Statistical damage mechanics of concrete[M]. 1st ed. Beijing:China Water Power Press, 2015. (in Chinese)
[17] 白以龙, 汪海英, 夏蒙棼, 等. 固体的统计细观力学-连接多个耦合的时空尺度[J]. 力学进展, 2006, 36(2):286-305. Bai Yilong, Wang Haiying, Xia Mengfen, et al. Statistical Mesomechanics of Solid, Linking Coupled Multiple Space and Time Scales[J]. Advances in Mechanics, 2006, 36(2):286-305. (in Chinese)
[18] Kupfer H, Hilsdorf H K, Rüsch H. Behavior of concrete under biaxial stresses[J]. American Concrete Institute Journal, 1969, 66(8):656-666.
[19] 过镇海. 混凝土的强度和变形-试验基础和本构关系[M]. 北京:清华大学出版社, 1997. Guo Zhenhai. The strength and deformation of concrete——experimental basis and constitutive relation[M]. Beijing:Tsinghua University Press, 1997. (in Chinese)
[1] 曹胜涛, 路德春, 杜修力, 赵密, 程星磊. 基于GPU并行计算的地下结构非线性动力分析软件平台开发[J]. 工程力学, 2019, 36(2): 53-65,86.
[2] 张艺欣, 郑山锁, 裴培, 李磊, 秦卿, 董立国. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78-86.
[3] 闫培雷, 孙柏涛. 基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究[J]. 工程力学, 2019, 36(2): 87-95.
[4] 韦芳芳, 郑泽军, 喻君, 王永泉. 基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法[J]. 工程力学, 2019, 36(2): 154-164.
[5] 叶艳霞, 张志银, 刘月, 张春苗. 基于弹头型屈服的轻骨料混凝土强度准则[J]. 工程力学, 2019, 36(1): 138-145.
[6] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70-79,87.
[7] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[8] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1-14,43.
[9] 王勇, 张亚军, 龙帮云, 马帅, 张苏河, 袁广林. 基于钢筋应变差的混凝土双向板极限状态分析方法[J]. 工程力学, 2019, 36(1): 104-118.
[10] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[11] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215.
[12] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[13] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[14] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53-61.
[15] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日