工程力学 ›› 2019, Vol. 36 ›› Issue (1): 70-79,87.doi: 10.6052/j.issn.1000-4750.2017.09.0705

• 土木工程学科 • 上一篇    下一篇

由小尺寸试件确定混凝土的断裂韧度与拉伸强度

管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟   

  1. 华北水利水电大学土木与交通学院, 河南, 郑州 450045
  • 收稿日期:2017-09-14 修回日期:2018-08-05 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 管俊峰(1980-),男,河南许昌人,副教授,博士,硕导,主要从事混凝土断裂力学研究(E-mail:guanjunfeng1980@126.com). E-mail:guanjunfeng1980@126.com
  • 作者简介:姚贤华(1976-),男,河南许昌人,实验师,博士,主要从事混凝土材料性能方面研究(E-mail:yaoxianhua@ncwu.edu.cn);白卫峰(1982-),男,河南鹤壁人,副教授,博士,硕导,主要从事混凝土损伤与断裂力学研究(E-mail:yf9906@163.com);陈记豪(1981-),男,河南驻马店人,副教授,博士,主要从事混凝土材料与结构方面研究(E-mail:cjh@ncwu.edu.cn);付金伟(1987-),男,河南新乡人,讲师,博士,主要从事隧道和岩体计算力学研究(E-mail:fujinwei1987@126.com).
  • 基金资助:
    国家自然科学基金面上项目(51779095,51679092);郑州市科技攻关项目(153PKJGG111,153PKJGG109)

DETERMINATION OF FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING SMALL SPECIMENS

GUAN Jun-feng, YAO Xian-hua, BAI Wei-feng, CHEN Ji-hao, FU Jin-Wei   

  1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China
  • Received:2017-09-14 Revised:2018-08-05 Online:2019-01-29 Published:2019-01-10

摘要: 该文利用骨料最大粒径dmax=10 mm,试件高度W依次为60 mm、80 mm、100 mm、140 mm、160 mm,厚度B=40 mm的小尺寸三点弯曲梁试件,来确定无尺寸效应的混凝土断裂韧度KIC与拉伸强度ft。区别于现有尺寸效应模型关注于"绝对尺寸W",该文提出"相对尺寸W/dmax"的概念,分析了骨料颗粒对有限尺寸试件断裂破坏的影响机理,进而将骨料最大粒径dmax与离散度参数β引入修正的边界效应模型的解析表达式中,发展建立了离散颗粒断裂模型,进而给出了由实验室条件下小尺寸试件(W=60 mm~160 mm和B=40 mm)的峰值荷载Pmax同时确定混凝土材料参数-KICft的实用方法。进而分析了不同试件组合和不同峰值荷载时裂缝扩展量取值对材料参数确定的影响规律,建立了混凝土材料破坏的完整曲线,给出了满足线弹性断裂力学条件的混凝土试件理论最小尺寸,并基于确定的材料参数对各试件的峰值荷载进行了成功预测。。

关键词: 混凝土, 小尺寸试件, 相对尺寸, 准脆性断裂, 断裂韧度, 拉伸强度

Abstract: A simple method is presented for determining the material parameters of concrete KIC and ft using the small specimens in laboratory, in which the maximum aggregate of the concrete dmax=10 mm, the specimens depth W=60 mm, 80 mm, 100 mm, 140 mm and 160 mm, and the specimens width B=40 mm. Compared to existing size effect models, only linked to specimen size W, the concept "relative size W/dmax" is proposed. The roles of aggregate size on fracture of finite size specimens were analyzed, and the maximum aggregate dmax and discrete number β are included in the analytic solution expression of the improved Boundary Effect Model, named discrete particle fracture model. The different combination conditions of tested specimens and different fictitious crack growth at peak loading are adopted to determine the influence law of KIC and ft. The whole fracture failure curves of the concrete material are obtained. The theoretical minimum concrete specimen size meeting the condition of linear elastic fracture mechanics is obtained. And the peak loads of every specimens are predicted successfully based on the determined material parameters.

Key words: concrete, small size specimen, relative size, quasi-brittle, fracture toughness, tensile strength

中图分类号: 

  • TU528
[1] ASTM E399-12e2, Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials[S]. Philadelphia:American Society for Testing and Material, 2013.
[2] DL/T 5332-2005, 水工混凝土断裂试验规程[S]. 北京:中国电力出版社, 2006. DL/T 5332-2005, Norm for fracture test of hydraulic concrete[S]. Beijng:China Electric Power Press, 2006. (in Chinese)
[3] CB/T 50152-2012, 混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社, 2012. CB/T 50152-2012, Standard for test method of concrete structures[S]. Beijing:Chinese Building Press, 2012. (in Chinese)
[4] SL 352-2006, 水工混凝土试验规程[S]. 北京:中国水利水电出版社, 2006. SL 352-2006, Test code for hydraulic concrete[S]. Beijing:Chinese Water & Power Press, 2006. (in Chinese)
[5] 徐世烺. 混凝土断裂韧度的概率统计分析[J]. 水利学报, 1984, 15(10):51-58. Xu Shilang. Probabilistic statistical analysis of fracture toughness of concrete[J]. Journal of Hydraulic Engineering, 1984, 15(10):51-58. (in Chinese)
[6] 徐世烺, 赵国藩. 巨型试件断裂韧度和高混凝土坝裂缝评定的断裂韧度准则[J]. 土木工程学报, 1991, 24(2):1-9. Xu Shilang, Zhao Guofan. Concrete fracture toughness of huge specimens and criterion of fracture toughness for judging cracks in high concrete dam[J]. China Civil Engineering Journal, 1991, 24(2):1-9. (in Chinese)
[7] 郑建军, 周欣竹. 混凝土断裂能尺寸效应的细观方法[J]. 水利学报, 2001, 61(10):54-57. Zheng Jianjun, Zhou Xinzhu. A mesoscopic approach for the size effect on fracture energy of concrete[J]. Journal of Hydraulic Engineering, 2001, 61(10):54-57. (in Chinese)
[8] 曹亮, 王向东. 三点弯曲试件混凝土尺寸效应公式的修正[J]. 河海大学学报(自然科学版), 2007, 35(1):63-66. Cao Liang, Wang Xiangdong. Modification of size effect formula of fracture toughness of concrete for three-point bending specimens[J]. Journal of Hohai University (Natural Sciences), 2007, 35(1):63-66. (in Chinese)
[9] 王学志, 毕重, 张小刚, 等. 碾压混凝土断裂韧度尺寸效应的试验研究[J]. 武汉理工大学学报, 2007, 29(6):54-57. Wang Xuezhi, Bi Zhong, Zhang Xiaogang, et al. Experimental investigation on size effect formula for fracture toughness of RCC[J]. Journal of Wuhan University of Technology, 2007, 29(6):54-57. (in Chinese)
[10] Wang X Z, Xu Z C, Bi Z, et al. Experimental investigation on size effect formulae suitable for common concrete nominal fracture toughness[C]. International Conference of Logistics Engineering and Management, Chengdu, 2010:1424-1430.
[11] 管俊峰. 钢筋混凝土结构仿真模型试验理论与应用研究[D]. 大连:大连理工大学, 2010. Guan Junfeng. Research on theory and application of simulation model test for reinforced concrete structure[D]. Dalian:Dalian University of Technology, 2010. (in Chinese)
[12] Guan J F, Zhao S B, Huang C K. Crack elongation and its width of large depth reinforced concrete beams[J]. Journal of harbin institute of technology (New Series), 2010, 17(5):631-635.
[13] 管俊峰, 赵顺波, 李晓克, 等. 钢筋混凝土梁裂缝宽度试验与计算方法研究[J]. 中国公路学报, 2011, 24(5):74-81, 88. Guan Junfeng, Zhao Shunbo, Li Xiaoke, et al. Experiment and calculation method of crack width of reinforced concrete beams[J]. China Journal of Highway and Transport, 2011, 24(5):74-81, 88. (in Chinese)
[14] Bažant Z P, Kazemi M T. Determination of fracture energy, process zone length, and brittleness number from size effect with application to rock and concrete[J]. International Journal of Fracture, 1990, 44(2):111-131.
[15] Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties[J]. Mechanics of Materials, 1994, 18(2):89-101.
[16] Karihaloo B L, Abdalla H M, Xiao Q Z. Size effect in concrete beams[J]. Engineering Fracture Mechanics, 2003, 70(7/8):979-993.
[17] Wang Y S, Hu X Z, Li L, et al. Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens[J]. Engineering Fracture Mechanics, 2016, 160(7):67-77.
[18] 管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10):1298-1306. Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering, 2016, 47(10):1298-1306. (in Chinese)
[19] Wang Y S, Hu X Z. Determination of strength and toughness of granite using notched three-point-bend samples[J]. Rock Mechanics and Rock Engineering, 2017, 50(1):17-28.
[20] 管俊峰, 王强, 胡晓智, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30. Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al. Boundary effect fracture model for concrete and granite considering aggregate size[J]. Engineering Mechanics, 2017, 34(12):22-30. (in Chinese)
[21] Guan J F, Hu X Z, Li Q B. In-depth analysis of notched 3-p-b concrete fracture[J]. Engineering Fracture Mechanics, 2016, 165(10):57-71.
[22] Hu X Z, Guan J F, Wang Y S, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175(4):146-167.
[23] Guan J F, Hu X Z, Yao X H, et al. Fracture of 0. 1 and 2 m long mortar beams under three-point-bending[J]. Materials & Design, 2017, 133(11):363-375.
[24] 李冬, 金浏, 杜修力, 等. 骨料级配对二维模型混凝土单轴抗拉强度影响的理论研究[J]. 工程力学, 2017, 34(6):64-72. Li Dong, Jin Liu, Du Xiuli, et al. A theoretical study on the influence of aggregate gradation on the tensile strength of 2-demensional model concrete[J]. Engineering Mechanics, 2017, 34(6):64-72. (in Chinese)
[25] 王璀瑾, 董伟, 王强, 等. 混凝土I型裂缝扩展准则比较研究[J]. 工程力学, 2016, 33(5):89-96. Wang Cuijin, Dong Wei, Wang Qiang, et al. A comparative study on propagation criterion of concrete mode I crack[J]. Engineering Mechanics, 2016, 33(5):89-96. (in Chinese)
[26] 卿龙邦, 王妥, 管俊峰, 等. 有限尺寸混凝土试件允许损伤尺度的解析研究[J]. 工程力学, 2017, 34(1):213-218. Qing Longbang, Wang Tuo, Guan Junfeng, et al. Analytical study on permissible damage scale of cracks in finite size concrete specimens[J]. Engineering Mechanics, 2017, 34(1):213-218. (in Chinese)
[27] Dong W, Zhou X M, Wu Z M, et al. Investigating crack initiation and propagation of concrete in a restrained shrinkage circular/elliptical ring test[J]. Materials & Structures, 2017, 50(1):1-13.
[28] Hu X Z, Wittmann F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2):209-221.
[29] Hu X Z, Duan K. Influence of fracture process zone height on fracture energy of concrete[J]. Cement and Concrete Research, 2004, 34(8):1321-1330.
[30] Hu X Z, Duan K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture, 2008, 154(1):3-14.
[31] Hu X Z, Duan K. Mechanism behind the size effect phenomenon[J]. Journal Engineering Mechanics, ASCE, 2010, 136(1):60-68.
[32] Tada H I, Paris P C, Irwin G R. The analysis of cracks handbook[M]. New York:ASME Press, 2000.
[33] 李晓东, 董伟, 吴智敏, 等. 小尺寸混凝土试件双K断裂参数试验研究[J]. 工程力学, 2010, 27(2):166-171, 185. Li Xiaodong, Dong Wei, Wu Zhimin, et al. Experimental investigation on double-K fracture parameters for small size specimens of concrete[J]. Engineering Mechanics, 2010, 27(2):166-171, 185. (in Chinese)
[34] 赵燕茹, 王磊, 韩霄峰, 等. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9):92-101. Zhao Yanru, Wang Lei, Han Xiaofeng, et al. Fracture toughness of basalt-fiber reinforced concrete subjected to cyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9):92-101. (in Chinese)
[35] Jenq Y S, Shah S P. Two parameter fracture model for concrete[J]. Journal Engineering Mechanics-ASCE, 1985, 111(10):1227-1241.
[36] 管俊峰, 李庆斌, 吴智敏. 采用峰值荷载法确定全级配水工混凝土断裂参数[J]. 工程力学, 2014, 31(8):8-13. Guan Junfeng, Li Qingbin, Wu Zhimin. Determination of fully-grade hydraulic concrete fracture parameters by Peak-load method[J]. Engineering Mechanics, 2014, 31(8):8-13. (in Chinese)
[37] Karihaloo B L, Nallathambi P. Effective crack model for the determination of fracture toughness (Ke IC) of Concrete[J]. Engineering Fracture Mechanics, 1990, 35(4/5):637-645.
[38] Zhang P, Gao J X, Dai X B, et al. Fracture behavior of fly ash concrete containing silica fume[J]. Structural Engineering & Mechanics, 2016, 59(2):261-275.
[39] Qing L B, Cheng Y H. The fracture extreme theory for determining the effective fracture toughness and tensile strength of concrete[J]. Theoretical and Applied Fracture Mechanics, 2018, 96(8):461-467.
[1] 叶艳霞, 张志银, 刘月, 张春苗. 基于弹头型屈服的轻骨料混凝土强度准则[J]. 工程力学, 2019, 36(1): 138-145.
[2] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[3] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1-14,43.
[4] 王勇, 张亚军, 龙帮云, 马帅, 张苏河, 袁广林. 基于钢筋应变差的混凝土双向板极限状态分析方法[J]. 工程力学, 2019, 36(1): 104-118.
[5] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[6] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215.
[7] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134-139.
[8] 汪建群, 吕鹏, 许巧, 罗许国, 祝明桥. 混凝土徐变计算模型及其实用性评述[J]. 工程力学, 2018, 35(S1): 156-160.
[9] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[10] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180.
[11] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[12] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[13] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[14] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[15] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248 -256 .
[2] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[3] 高彦芳, 陈勉, 林伯韬, 金衍. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019, 36(1): 32 -43 .
[4] 于潇, 陈力, 方秦. 一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用[J]. 工程力学, 2019, 36(1): 44 -52,69 .
[5] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 -14,43 .
[6] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15 -22 .
[7] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计:复合Hermite模型[J]. 工程力学, 2019, 36(1): 23 -31 .
[8] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53 -60 .
[9] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96 -103,118 .
[10] 贾布裕, 颜全胜, 余晓琳, 杨铮. 考虑行人随机性的人行桥人致横向振动稳定性分析[J]. 工程力学, 2019, 36(1): 155 -164 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日