工程力学 ›› 2018, Vol. 35 ›› Issue (11): 249-256.doi: 10.6052/j.issn.1000-4750.2017.09.0698

• 其他工程学科 • 上一篇    

破冰船冰区操纵性能离散元分析

狄少丞, 王庆, 薛彦卓, 李佳霖   

  1. 哈尔滨工程大学船舶工程学院, 哈尔滨 150001
  • 收稿日期:2017-09-11 修回日期:2018-04-03 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 王庆(1972-),男,黑龙江人,教授,博士,硕导,主要从事极地船舶与海洋工程设计制造技术(E-mail:wangqing@hrbeu.edu.cn). E-mail:wangqing@hrbeu.edu.cn
  • 作者简介:狄少丞(1986-),男,山西人,讲师,博士,硕导,主要从事工程海冰数值模型研究(E-mail:dishaocheng@hrbeu.edu.cn);薛彦卓(1978-),男,辽宁人,教授,博士,博导,主要从事极地船舶与海洋工程设计制造技术(E-mail:xueyanzhuo@hrbeu.edu.cn);李佳霖(1993-),男,黑龙江人,本科生,主要从事结构优化设计研究(E-mail:94775509@163.com).
  • 基金资助:
    国家自然科学基金青年项目(41606213);国家自然科学基金重点项目(51639004);国家自然科学基金面上项目(51579054)

MANOEUVRABILITY ANALYSIS OF AN ICEBREAKER BASED ON DISCRETE ELEMENT METHO

DI Shao-cheng, WANG Qing, XUE Yan-zhuo, LI Jia-lin   

  1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2017-09-11 Revised:2018-04-03 Online:2018-11-07 Published:2018-11-07

摘要: 针对浮冰区与平整冰区中航行船舶冰阻力与操纵性的预报问题,采用冰-水-船相互作用数值模型对“雪龙”船在浮冰区与平整冰区中的回转运动特性进行了数值分析。在数值模型中,采用具有黏结破碎特征的球形离散元模型来模拟冰盖的破坏过程,采用球体-三角形接触模型来模拟船-冰之间的碰撞过程,建立了考虑船舶桨力、舵力及水动力的六自由度操纵运动方程。在此基础上对船舶在不同厚度(1.2 m~1.7 m)、不同密集度(40%,60%,80%)浮冰区与不同厚度(0.8 m~1.2 m)平整冰区行进时的破冰阻力及回转特性进行了数值模拟。模拟结果表明:在相同厚度的浮冰区航行时冰阻力小于平整冰区航行的阻力值;浮冰区中回转圈直径约为敞水中回转直径的1倍~2倍;平整冰中回转直径约为敞水中回转直径的2倍~6倍。

关键词: 破冰船, 冰阻力, 操纵性, 数值分析, 离散元

Abstract: This paper presents a numerical solution to the prediction of ice resistance and maneuverability of an ice breaker in ice regions, which was solved in the time domain by the discrete element method (DEM) and the maneuvering equation. The breaking process of an intact ice sheet by an advancing ice breaker was investigated by a bonded particle model in the discrete element method. The bonded elements can be broken in the process of the interaction between the ice sheet and the ship hull. The ship hull is constructed with triangular elements and treated as a six degrees of freedom system to simulate maneuvering in level and floe ice. The equations of motion for maneuvering including propeller force, rudder force and hydrodynamic force were adopted in this simulation. The influences of the ice thicknesses (1.2 m~1.7 m) and ice concentrations (40%, 60%, 80%) for floe ice and ice thickness (0.8 m~1.2 m) for level ice on the ice resistance and maneuverability of the ship were numerically established. The simulation results by the present method indicate that the ice resistance of the ice breaker in floe ice region has lower value than that in level ice region. The diameters of turning circle in the floe ice region basically coincide with that in open water. The ship has poorer maneuverability in the level ice region, and the diameters of turning circle are two to six times that in open water. This study can aid the prediction of ice resistance and maneuverability of ice breakers in ice-covered fields.

Key words: ice breaker, ice resistance, maneuverability, numerical simulation, discrete element method

中图分类号: 

  • U674.21
[1] Suyuthi A, Leira B J, Riska K. Full scale measurement on level ice resistance of icebreaker[C]. Rotterdam:American Society of Mechanical Engineers, 2011:983-989.
[2] Frederking R. Ice loading on a ship in discontinuous ice[C]. Beijing:International Society of Offshore and Polar Engineers, 2010:570-576.
[3] Aksnes V. A panel method for modelling level ice actions on moored ships. Part 1:local ice force formulation[J]. Cold Regions Science and Technology, 2011, 65:128-136.
[4] Zhou L, Riska K, Polach R V B U, et al. Experiments on level ice loading on an icebreaking tanker with different ice drift angles[J]. Cold Regions Science and Technology, 2013, 85:79-93.
[5] Polach R V B U, Ehlers S. Heave and pitch motions of a ship in model ice:An experiments study on ship resistance and ice breaking pattern[J]. Cold Regions Science and Technology, 2011, 68:49-59.
[6] Suyuthi A, Leira B J, Riska K. A generalized probabilistic model of ice load peaks on ship hulls in broken-ice fields[J]. Cold Regions Science and Technology, 2014, 97:7-20.
[7] Lubbad R, Løset S. A numerical model for real-time simulation of ship-ice interaction[J]. Cold Regions Science and Technology, 2011, 65:111-127.
[8] Tan X, Riska K, Moan T. Effect of dynamic bending of level ice on ship's continuous-mode icebreaking[J]. Cold Regions Science and Technology, 2014, 106/107:82-95.
[9] Zhou Q, Peng H, Qiu W. Numerical investigations of ship-ice interaction and maneuvering performance in level ice[J]. Cold Regions Science and Technology, 2016, 122:36-49.
[10] 任奕舟, 邹早建. 破冰船在冰层中连续破冰时的冰阻力预报[J]. 上海交通大学学报, 2016, 50(8):1152-1157 Ren Yizhou, Zou Zaojian. Ice resistance prediction of an icebreaker during continuous icebreaking in level ice[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8):1152-1157. (in Chinese)
[11] 刘源, 张志国, 张维, 等. 破冰船阻力性能估算[J]. 舰船科学技术, 2014, 36(7):53-57. Liu Yuan, Zhang Zhiguo, Zhang Wei, et al. Investigation and estimation of ice-resistance for icebreaker[J]. Ship Science and Technology, 2014, 36(7):53-57. (in Chinese)
[12] 黄焱, 关湃, 禹沐. 破冰船航行状态在海冰作用下的运动响应分析[J]. 数学的实践与认识, 2015, 44(2):149-160. Huang Yan, Guan Pai, Yu Mu. Study of the sailing's moving responses of an icebreaker in ice[J]. Mathematics in Practice and Theory, 2015, 44(2):149-160. (in Chinese)
[13] 王钰涵, 李辉, 任慧龙, 等. 连续破冰模式下破冰船的冰力研究[J]. 海洋工程, 2013, 31(4):68-73. Wang Yuhan, Li Hui, Ren Huilong, et al. Study of ice force about icebreaker based on continuous breaking pattern[J]. The Ocean Engineering, 2013, 31(4):68-73. (in Chinese)
[14] Tan X, Su B, Riska K, Moan T. A six-degrees-of-freedom numerical model for level ice-ship interaction[J]. Cold Regions Science and Technology, 2013, 92:1-16.
[15] Kuutti J, Kolari K, Marjavaara P. Simulation of ice crushing experiments with cohesive surface methodology[J]. Cold Regions Science and Technology, 2013, 92:17-28.
[16] Liu Z, Amdahl J, Løset S. Plasticity based material modelling of ice and its application to ship-iceberg impacts[J]. Cold Regions Science and Technology, 2011, 65:326-334.
[17] 任奕舟, 邹早建. 破冰船在冰层中连续破冰过程的数值模拟[J]. 振动与冲击, 2016, 35(18):210-228. Ren Yizhou, Zou Zaojian. Numerical simulation of the continuous icebreaking by an icebreaker in level ice[J]. Journal of Vibration and Shock, 2016, 35(18):210-228. (in Chinese)
[18] Yulmetov R, Løset S. Validation of a numerical model for iceberg towing in broken ice[J]. Cold Regions Science and Technology, 2017, 138:36-45.
[19] 狄少丞, 季顺迎, 薛彦卓. 船舶在平整冰区行进过程的离散元分析[J]. 海洋工程, 2017, 35(3):59-69. Di Shaocheng, Ji Shunying, Xue Yanzhuo. Analysis of ship navigation in level ice-covered regions with discrete element method[J]. The Ocean Engineering, 2017, 35(3):59-69. (in Chinese)
[20] Yulmetov R, Lubbad R, Løset S. Planar multi-body model of iceberg free drift and towing in broken ice[J]. Cold Regions Science and Technology, 2016, 121:154-166.
[21] Kim H S, Ha M K, Williams F M. Speed-power performance of 95,000 DWT arctic tanker design[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127:135-140.
[22] Su B, Skjetne R, Berg T E. Numerical assessment of a double-acting offshore vessel's performance in level ice with experimental comparison[J]. Cold Regions Science and Technology, 2014, 106-107:96-109.
[23] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41:1329-1364.
[24] 季顺迎, 狄少丞, 李正, 等. 海冰与直立结构相互作用的离散单元数值模拟[J]. 工程力学, 2013, 30(1):463-469. Ji Shunying, Di Shaocheng, Li Zheng, et al. Discrete element modelling of interaction between sea ice and vertical offshore structures[J]. Engineering Mechanics, 2013, 30(1):463-469. (in Chinese)
[25] Gherardi M, Lagomarsino M C. Characterizing the size and shape of sea ice floes[J]. Scientific Reports, 2015, 5:1-11.
[26] 盛振邦, 刘应中. 船舶原理(下)[M]. 上海:上海交通大学出版社, 2004:280-285. Sheng Zhenbang, Liu Yingzhong. Ship theory(second volume)[M]. Shanghai:Shanghai Jiao Tong University Press, 2004:280-285. (in Chinese)
[27] 周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983, 6:21-36. Zhou Zhaoming, Sheng Ziyin, Feng Wushi. On manoeuvrability prediction for multipurpose cargo ship[J]. Ship Engineering, 1983, 6:21-36. (in Chinese)
[28] 王超, 康瑞, 孙文林, 等. 平整冰中破冰船操纵性能初步预报方法[J]. 哈尔滨工程大学学报, 2016, 37(6):747-753. Wang Chao, Kang Rui, Sun Wenlin, et al. Preliminary forecasting method for icebreaker maneuverability on level and smooth ice[J]. Journal of Harbin Engineering University, 2016, 37(6):747-753. (in Chinese)
[29] 范尚雍. 船舶操纵性[M]. 北京:国防工业出版社, 1988:62-66. Fan Shangyong. Ship manoeuvrability[M]. Beijing:National Defense Industry Press, 1988:62-66. (in Chinese)
[30] 陈海龙. 冰区航行的船舶运动数学模型[D]. 大连:大连海事大学, 2014. Chen Hailong. The mathematical model of ship motion in ice[D]. Dalian:Dalian Maritime University, 2014. (in Chinese)
[31] 付卫华. 船舶操纵运动数值模拟[D]. 武汉:武汉理工大学, 2003. Fu Weihua. Numerical simulation of ship's maneuvering motion[D]. Wuhan:Wuhan University of Technology, 2003. (in Chinese)
[32] 刘伟明. 波浪中船舶六自由度"操纵-摇荡"耦合运动数值仿真[D]. 哈尔滨:哈尔滨工程大学, 2010. Liu Weiming. Research on simulation of ship maneuvering-swaying coupling motion of 6-DOF in waves[D]. Harbin:Harbin Engineering University, 2010. (in Chinese)
[33] 狄少丞, 季顺迎. 海冰与自升式海洋平台相互作用GPU离散元模拟[J]. 力学学报, 2014, 46(4):561-571. Di Shaocheng, Ji Shunying. GPU-based discrete element modelling of interaction between sea ice and jack-up platform structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):561-571. (in Chinese)
[34] Timco G W, Weeks W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60:107-129.
[35] Schwarz J, Frederking R, Gavrillo V, et al. Standardized testing methods for measuring mechanical properties of ice[J]. Cold Regions Science and Technology, 1981, 4:245-253.
[1] 王蕴嘉, 周梦佳, 宋二祥. 考虑颗粒破碎的堆石料湿化变形特性离散元模拟研究[J]. 工程力学, 2018, 35(S1): 217-222.
[2] 王永亮, 鞠杨, 陈佳亮, 杨永明, Li C F. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17-25,36.
[3] 唐欣薇, 黄文敏, 周元德, 张楚汉. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9): 153-160.
[4] 肖军华, 张德, 王延海, 郭佳奇. 基于DEM-FDM耦合的普通铁路碎石道床-土质基床界面接触应力分析[J]. 工程力学, 2018, 35(9): 170-179.
[5] 郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149.
[6] 王勇, 段亚昆, 张亚军, 袁广林, 王腾焱, 吕俊利. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3): 65-78.
[7] 崔圣华, 裴向军, 黄润秋, 孟祥瑞, 朱凌. 团块缺陷结构对岩石静动力学特性影响的数值模拟分析[J]. 工程力学, 2018, 35(1): 88-97.
[8] 齐念, 叶继红. 弹性DEM方法在杆系结构中的应用研究[J]. 工程力学, 2017, 34(7): 11-20.
[9] 唐欣薇, 黄文敏, 周元德, 康政. 华南风化花岗岩劈拉断裂行为的试验与细观模拟研究[J]. 工程力学, 2017, 34(6): 246-256.
[10] 严颖, 赵金凤, 季顺迎. 块石含量和空间分布对土石混合体抗剪强度影响的离散元分析[J]. 工程力学, 2017, 34(6): 146-156.
[11] 杨智勇, 曹子君, 李典庆, 方国光. 颗粒接触摩擦系数空间变异性对颗粒流双轴数值试验的影响[J]. 工程力学, 2017, 34(5): 235-246.
[12] 钟江城, 周宏伟, 赵宇峰, 刘亚群, 易海洋, 薛东杰. 浅埋煤层开采突水溃砂两相流的耦合数值研究[J]. 工程力学, 2017, 34(12): 229-238.
[13] 范栋浩, 杜咏, 盛红梅. 高温下张弦梁结构力学特征解析解[J]. 工程力学, 2016, 33(4): 195-204.
[14] 王勇, 王腾焱, 袁广林, 安晓莉, 董毓利. 基于不同混凝土本构模型的混凝土双向板火灾行为分析[J]. 工程力学, 2016, 33(11): 208-219.
[15] 吴丽丽, 李佳蔚, 邢瑞娇, 安丽佩. 钢板-混凝土组合板抗剪承载性能的试验研究与数值分析[J]. 工程力学, 2016, 33(10): 173-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[2] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[3] 郭薇薇;夏禾;徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006, 23(2): 103 -110 .
[4] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
[5] 贺瑞;秦权. 产生时程分析用的高质量地面运动时程的新方法[J]. 工程力学, 2006, 23(8): 12 -18 .
[6] 顾明;叶丰. 高层建筑风致响应的简化分析方法[J]. 工程力学, 2006, 23(8): 57 -61,4 .
[7] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[8] 许福友;陈艾荣. 平板颤振导数的参数弹性研究[J]. 工程力学, 2006, 23(7): 60 -64 .
[9] 曹树谦;;陈予恕;. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68 -079 .
[10] 陈伟球;严 蔚. 混凝土结构服役智能化的若干研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ): 91 -105 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日