工程力学 ›› 2018, Vol. 35 ›› Issue (12): 229-239.doi: 10.6052/j.issn.1000-4750.2017.09.0676

• 机械工程学科 • 上一篇    下一篇

考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究

李焱1,2, 唐友刚1, 朱强2, 曲晓奇1, 刘利琴1   

  1. 1. 天津大学水利工程仿真与安全国家重点实验室, 天津 300072;
    2. 美国加州大学圣地亚哥分校结构工程系, 拉荷亚 92023
  • 收稿日期:2017-09-02 修回日期:2018-01-16 出版日期:2018-12-14 发布日期:2018-12-14
  • 通讯作者: 唐友刚(1952-),男,河北人,教授,博士,博导,主要从事船舶与海洋工程动力分析,海洋新能源工程研究(E-mail:tangyougang_td@163.com). E-mail:tangyougang_td@163.com
  • 作者简介:李焱(1990-),男,天津人,博士生,主要从事海上风力机系统动力学研究(E-mail:liyan_tju@126.com);朱强(1970-),男,江苏人,副教授,博士,博导,主要从事结构工程,仿生学,海上新能源结构动力学研究(E-mail:qizhu@ucsd.edu);曲晓奇(1992-),女,辽宁人,博士生,主要从事海上风力机空气动力学研究(E-mail:quxiaoqi1234@126.com);刘利琴(1977-),女,河北人,教授,博士,博导,主要从事船舶与海洋结构物动力学研究(E-mail:liuliqin@tju.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51479134);天津市自然科学基金项目(16JCYBJC21200);上海交通大学海洋工程重点试验室开放基金项目(1501)

STUDY ON DYNAMIC RESPONSE OF FLOATING OFFSHORE WIND TURBINE BASED ON STRETCHING-BENDING-TORSION COUPLED NONLINEAR MOORING LOADS

LI Yan1,2, TANG You-gang1, ZHU Qiang2, QU Xiao-qi1, LIU Li-qin1   

  1. 1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin 300072, China;
    2. Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USA
  • Received:2017-09-02 Revised:2018-01-16 Online:2018-12-14 Published:2018-12-14

摘要: 考虑系泊系统拉伸-弯曲-扭转变形产生的非线性系泊力,研究海上浮式风力机系统的动力响应。考虑系缆非线性几何变形,建立系泊系统拉伸-弯曲-扭转变形的动力学分析模型。建模过程中,采用了四元数方法进行局部坐标系与全局坐标系之间的旋转,避免了旋转过程中奇点的产生。综合考虑系缆非线性系泊力、水动力、空气动力及风力机结构系统,建立了系统动力学分析模型,开发了考虑系泊系统非线性系泊力的系统动力响应计算程序。针对OC3 Hywind Spar型5 MW浮式风力机,分析额定作业海况与极限海况下风力机系统的动力响应,并将结果与系泊系统采用准静态悬链线方法的模拟结果进行了对比。结果表明,考虑拉伸-弯曲-扭转变形效应后,系泊缆张力的波频响应被放大,同时还出现了多个高频峰值,将对系泊缆的疲劳寿命计算产生影响。

关键词: 浮式风力机, 几何非线性, 系泊系统, 刚柔耦合, 动力响应

Abstract: Based on the nonlinear mooring loads induced by the deformations of mooring lines, including sketching, bending and torsion effects, the dynamic responses of floating offshore wind turbines (FOWTs) were analyzed. By considering the nonlinear geometric deformations, a stretching-bending-torsion coupled dynamic analysis model for a mooring system was proposed. Euler parameters were used for the transformation between the global and local coordinate systems to avoid the occurrence of singularity. The dynamic analysis model of the FOWT was established by considering the nonlinear mooring loads, hydrodynamics, aerodynamics as well as the mechanical system of a wind turbine. Based on this nonlinear formulation, a numerical program of the dynamic response of FOWT was developed. The OC3 Hywind Spar with a 5 MW baseline wind turbine was selected as a sample platform. The dynamic responses under both the operating and extreme sea states were simulated. The results were compared with those calculated based on the catenary theory. By considering the dynamic effect of mooring lines, the wave frequency response of tension is amplified, and several peaks in the range of high frequencies occur. Those responses will affect the fatigue life of mooring lines.

Key words: floating offshore wind turbine, geometric nonlinear, mooring system, rigid-flexible coupling, dynamic response

中图分类号: 

  • P752
[1] Shen M, Hu Z, Liu G. Dynamic response and viscous effect analysis of a TLP-type floating wind turbine using a coupled aero-hydro-mooring dynamic code[J]. Renewable Energy, 2016, 99:800-812.
[2] 刘雄, 梁湿. 风力机翼型在复合运动下的动态失速数值分析[J]. 工程力学, 2016, 33(12):248-256. Liu Xiong, Liang Shi. Numerical investigation on dynamic stall of wind turbine airfoil undergoing complex motion[J] Engineering Mechanics, 2016, 33(12):248-256. (in Chinese)
[3] 李炜, 潘文豪, 樊健生. 海上风力机单立柱三桩基础灌浆连接段轴向承载力试验研究[J]. 工程力学, 2016, 33(11):148-154. Li Wei, Pan Wenhao, Fan Jiansheng. Experimental research on the ultimate axial capacity of grouted connections in tripod support structures of offshore wind turbines[J]. Engineering Mechanics, 2016, 33(11):148-154. (in Chinese)
[4] 李斌, 文昊天, 宫兆宇. 风力发电机塔筒风致响应分析与风振控制研究[J]. 工程力学, 2017, 34(增刊1):134-138. Li Bin, Wen Haotian, Gong Zhaoyu. Wind-induced response analysis and wind vibration control of a wind turbine tower drum[J]. Engineering Mechanics, 2017, 34(Suppl 1):134-138. (in Chinese)
[5] 柯世堂, 王同光, 胡丰, 等. 基于塔架-叶片耦合模型风力机全机风振疲劳分析[J]. 工程力学, 2015, 32(8):36-41. Ke Shitang, Wang Tongguang, Hu Feng, et.al, Wind-induced fatigue analysis of wind turbine system based on tower-blade coupled model[J]. Engineering Mechanics, 2015, 32(8):36-41. (in Chinese)
[6] Salehyar S, Li Y, Zhu Q. Fully-coupled time-domain simulations of the response of a floating wind turbine to non-periodic disturbances[J]. Renewable Energy, 2017, 111:214-226.
[7] Bae Y H, Kim M H. Aero-elastic-control-floater-mooring coupled dynamic analysis of floating offshore wind turbine in maximum operation and survival conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2):020902.
[8] Li L, Gao Y, Hu Z, et al. Model test research of a semisubmersible floating wind turbine with an improved deficient thrust force correction approach[J]. Renewable Energy, 2017, 199:95-105.
[9] Li Y, Tang Y, Zhu Q, et al. Effects of second-order wave forces and aerodynamic forces on dynamic responses of a TLP-type floating offshore wind turbine considering the set-down motion[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6):063302.
[10] 唐友刚, 张若瑜, 庄茁. 深海系泊系统模态分析[J]. 工程力学, 2010, 27(1):233-239. Tang Yougang, Zhang Ruoyu, Zhuang Zhuo. Modal analysis of mooring system in deep sea[J]. Engineering Mechanics, 2010, 27(1):233-239. (in Chinese)
[11] Li J, Tang Y, Wang B. Motion characteristics of novel floating foundation for offshore wind turbine[J]. Transactions of Tianjin University, 2016, 22(1):57-63.
[12] 徐应瑜, 胡志强, 刘格梁. 10 MW级海上浮式风力机运动特性研究[J]. 海洋工程, 2017, 35(3):44-51. Xu Yingyu, Hu Zhiqiang, Liu Geliang. Kinetic characteristics research of the 10 MW-level offshore floating wind turbine[J]. the Ocean Engineering, 2017, 35(3):44-51. (in Chinese)
[13] Matha D. Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts[D]. University of Colorado-Boulder, 2009.
[14] Liu G, Hu Z, Duan F. Preliminary analysis about coupled response of offshore floating wind turbine system in time domain[C]//ASME 201534th International Conference on Ocean, Offshore and Arctic Engineering (pp. V009T09A042-V009T09A042). American Society of Mechanical Engineers, 2015.
[15] Liu L, Jin W, Guo Y, Dynamic analysis of a truss Spar-type floating foundation for 5 MW vertical axis wind turbine[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(6):061902-1-061902-9.
[16] 唐友刚, 张若瑜, 程楠, 等. 集中质量法计算深海系泊冲击张力[J]. 天津大学学报, 2009, 42(8):695-701. Tang Yougang, Zhang Ruoyu, Cheng Nan. Analysis of snap tension of deep water mooring with lumped mass method[J]. Journal of Tianjin University, 2009, 42(8):696-701. (in Chinese)
[17] 杜宇, 武文华, 王延林, 等. 基于自容式技术的系泊缆水下监测方法[J]. 哈尔滨工程大学学报, 2016, 37(8):1003-1008. Du Yu, Wu Wenhua, Wang Yanlin, et al. An underwater monitoring method for mooring lines based on self-contained technique[J]. Journal of Harbin Engineering University, 2016, 37(8):1003-1008. (in Chinese)
[18] 李辉, 叶仁杰, 韩力, 等. 电网电压跌落下双馈风力发电机组暂态性能的比较分析[J]. 太阳能学报, 2010, 31(6):775-781. Li Hui, Ye Renjie, Han Li, et al. Comparison and analysis of transient performances for doubly fed induction generator wind turbine under grid voltage dip[J]. Acta Energiae Solaris Sinica, 2010, 31(6):775-781. (in Chinese)
[19] 王青占, 赵建中, 郭兴明. 复杂荷载环境下海上风力机的建模及动力学特性分析[J]. 上海大学学报(自然科学版), 2016, 22(5):573-585. Wang Qingzhan, Zhao Jianzhong, Guo Xingming. Dynamics modeling and analysis of offshore wind turbines under complicated loads[J]. Journal of Shanghai University (Natural Science Edition). 2016, 22(5):573-585. (in Chinese)
[20] 李振辉, 崔新维. 基于传递矩阵法的风力机主轴动力学分析[J]. 机械工程与自动化, 2014(5):44-45. Li Zhenhui, Cui Xinwei. Wind turbine main-shaft dynamics analysis based on transfer matrix method[J]. Mechanical Engineering & Automation, 2014(5):44-45. (in Chinese)
[21] Tjavaras A A, Zhu Q, Liu Y, et al. The mechanics of highly-extensible cables[J]. Journal of Sound and Vibration, 1998, 213(4):709-737.
[22] Hsu W, Thiagarajan K P, Manuel L. Extreme mooring tensions due to snap loads on a floating offshore wind turbine system[J]. Marine Structures, 2017, 55:182-199.
[23] Bae Y H, Kim M H, Kim H C. Performance changes of a floating offshore wind turbine with broken mooring line[J]. Renewable Energy, 2017, 101:364-375.
[24] Tjavaras A A. The dynamics of highly extensible cables[D]. Massachusetts:Massachusetts Institute of Technology, 1996.
[25] 王盛炜. 海洋自由立管重入井的运动策略优化研究[D]. 上海:上海交通大学, 2014:35-37. Wang Shengwei. Investigation on motion scheme optimization of free-hanging marine riser in re-entry[D] Shanghai:Shanghai Jiaotong University, 2014:35-37. (in Chinese)
[26] Deuflhard P. Newton methods for nonlinear problems:affine invariance and adaptive algorithms[M]. Berlin, Heidelberg:Springer Science & Business Media, 2011:315-368.
[27] Li Y, Tang Y, Zhu Q, et al. Feasibility analysis of floating offshore wind turbine with single point mooring system[C]//The 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2017.
[28] Tang Y G, Li Y, Liu L Q, et al. Study on influence of vortex induced loads on the motion of spar-type wind turbine based on aero-hydro-vortex-mooring coupled model[C]//ASME 201736th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017.
[29] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5 MW reference wind turbine for offshore system development[R]. National Renewable Energy Laboratory, Golden, Co, Technical Report No. NREL/TP-500-38060, 2009.
[30] Jonkman J M. Definition of the floating system for phase IV of OC3[R]. Golden, CO:National Renewable Energy Laboratory, 2010.
[31] Driscoll F, Jonkman J, Robertson A, et al. Validation of a FAST model of the statoil-hywind demo floating wind turbine[J]. Energy Procedia, 2016, 94:3-19.
[32] 刘格梁. 海上浮式风力机系统动力响应的模拟与分析[D]. 上海:上海交通大学, 2016, 81. Liu Geliang, Simulation and analysis for dynamic response of offshore floating wind turbine system[D]. Shanghai:Shanghai Jiaotong University, 2016, 81. (in Chinese)
[33] Chen J, Hu Z, Liu G, et al. Comparison of different dynamic models for floating wind turbines[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6):063304-1-063304-27.
[1] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[2] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18-23.
[3] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2): 153-159.
[4] 刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.
[5] 黄林杰, 周臻. 带填充墙自复位预应力混凝土框架结构的抗震性能分析[J]. 工程力学, 2018, 35(10): 162-171.
[6] 赵春风, 陈健云, 王静峰. AP1000核电厂房动力特性参数化分析与优化[J]. 工程力学, 2017, 34(增刊): 282-288.
[7] 齐念, 叶继红. 弹性DEM方法在杆系结构中的应用研究[J]. 工程力学, 2017, 34(7): 11-20.
[8] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
[9] 朱志辉, 杨乐, 王力东, 蔡成标, 戴公连. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4): 78-87, 100.
[10] 郭义庆, 喻君. 单柱失效下结构连续倒塌的动力响应分析[J]. 工程力学, 2017, 34(4): 72-77.
[11] 陈万祥, 郭志昆, 邹慧辉, 张涛. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究[J]. 工程力学, 2017, 34(1): 180-191.
[12] 王沿朝, 陈清军. 地震波反演与地下结构的动力响应分析[J]. 工程力学, 2016, 33(增刊): 227-233.
[13] 谷良贤, 王一凡. 几何非线性假设下温度大范围变化瞬态热力耦合问题研究[J]. 工程力学, 2016, 33(8): 221-230.
[14] 巴振宁, 梁建文. 流体饱和半空间中埋置球面P1、P2和SV波源动力格林函数[J]. 工程力学, 2016, 33(5): 34-43.
[15] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日