工程力学 ›› 2018, Vol. 35 ›› Issue (12): 71-80.doi: 10.6052/j.issn.1000-4750.2017.09.0668

• 土木工程学科 • 上一篇    下一篇

混合配筋预应力混凝土管桩抗剪性能试验研究

杜新喜1, 胡锐1, 袁焕鑫1, 程晓燕1, 宗亮2   

  1. 1. 武汉大学土木建筑工程学院, 武汉 430072;
    2. 天津大学建筑工程学院, 滨海土木工程结构与安全教育部重点实验室, 天津 300072
  • 收稿日期:2017-08-31 修回日期:2018-01-17 出版日期:2018-12-14 发布日期:2018-12-14
  • 通讯作者: 袁焕鑫(1988-),男,湖南人,副教授,博士,从事结构工程研究(E-mail:yuanhx@whu.edu.cn). E-mail:yuanhx@whu.edu.cn
  • 作者简介:杜新喜(1961-),男,陕西人,教授,博士,博导,从事结构工程研究(E-mail:duxinxi@163.com);胡锐(1993-),男,湖南人,硕士生,从事结构工程研究(E-mail:hurui930830@foxmail.com);程晓燕(1974-),男,湖北人,副教授,博士,从事结构工程研究(E-mail:xiaoyancheng39@163.com);宗亮(1988-),男,山东人,副教授,博士,从事结构工程研究(E-mail:zongliang@tju.edu.cn).
  • 基金资助:
    湖北省自然科学基金项目(2014CFB715);中央高校基本科研业务费专项资金项目(2042016kf1125)

EXPERIMENTAL STUDY ON SHEAR BEHAVIOR OF PRESTRESSED CONCRETE PIPE PILE WITH HYBRID REINFORCEMENT

DU Xin-xi1, HU Rui1, YUAN Huan-xin1, CHENG Xiao-yan1, ZONG Liang2   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan 430072, China;
    2. Key Laboratory of Coast Structures Safety of China Education Ministry, School of Civil Engineering, Tianjin University, Tianjin 300072, China
  • Received:2017-08-31 Revised:2018-01-17 Online:2018-12-14 Published:2018-12-14

摘要: 通过开展7根混合配筋预应力混凝土管桩和3根预应力混凝土管桩的抗剪性能试验,对比了两种预应力混凝土管桩的抗剪承载力,分析了非预应力钢筋和轴压力对抗剪承载力的影响。试验结果表明:配置非预应力钢筋提高了预应力混凝土管桩的抗剪承载力和抗剪刚度,施加轴压力可以明显提高预应力混凝土管桩的抗剪承载力。针对试验试件进行了有限元模拟,模拟结果与试验结果吻合良好。在试验与有限元分析结果的基础上,提出了修正的抗剪承载力计算公式,可以为混合配筋预应力混凝土管桩技术规程的编制工作提供依据。

关键词: 混合配筋预应力混凝土管桩, 抗剪承载力, 试验研究, 有限元, 计算公式

Abstract: A total of 7 prestressed concrete pipe piles with hybrid reinforcement (PRC pipe pile) and 3 prestressed concrete pipe piles (PHC pipe pile) were tested, hence the shear capacities of the two kinds of pipe piles were obtained. The influences of non-prestressed steel bars and axial compression were analyzed. It was indicated that introducing non-prestressed steel bars could increase the shear capacities and shear stiffness. Meanwhile, increasing the axial compression force would raise the shear capacities of pipe piles. The tests were simulated by finite element models and the numerical results were in a good agreement with the test results. Based on the obtained test and numerical data, a modified formula for calculating the shear capacities of PRC pipe piles has been proposed, which contributes to the establishment of the technical specification for the design of PRC pipe piles.

Key words: PRC pipe pile, shear capacity, experimental study, finite element, calculation formula

中图分类号: 

  • TU473.1+3
[1] 郭宏磊, 贺雯, 胡亦兵, 等. PHC桩的竖向极限承载力的预测[J]. 工程力学, 2004, 21(3):78-83. Guo Honglei, He Wen, Hu Yibing, et al. Prediction of vertical ultimate bearing capacity of PHC piles[J]. Engineering Mechanics, 2004, 21(3):78-83. (in Chinese)
[2] 蒋建平. 管桩承载性状的数学描述[J]. 工程力学, 2008, 25(5):189-195. Jiang Jianping. Mathematic description of bearing behavior of pipe piles[J]. Engineering Mechanics, 2008, 25(5):189-195. (in Chinese)
[3] 赵俭斌, 王志斌, 史永强. 静压PHC管桩群桩效应的数值模拟分析[J]. 工程力学, 2014, 31(增刊1):139-144. Zhao Jianbin, Wang Zhibin, Shi Yongqiang. Numerical simulation analysis on efficiency of static pressed PHC pipe pile group[J]. Engineering Mechanics, 2014, 31(Suppl 1):139-144. (in Chinese)
[4] Kou H L, Guo W, Zhang M. Field Study of Set-up Effect in Open-ended PHC Pipe Piles[J]. Marine Georesources & Geotechnology, 2016, 35(2):208-215.
[5] Park J B, Sim Y J, Chun Y S, et al. Assessment of Optimum Reinforcement of Rebar for Joint of PHC Pile and Foundation Plate[J]. Journal of Urology, 2010, 1(1):289-293.
[6] 杨志坚, 李帼昌, 王琦. 轴力作用下预应力高强混凝土管桩抗弯性能研究[J]. 工程力学, 2017, 34(增刊1):185-191. Yang Zhijian, Li Guochang, Wang Qi. Nonlinear bending behavior of prestressed high strength concrete pile under axial and lateral loading[J]. Engineering Mechanics, 2017, 34(Suppl 1):185-191. (in Chinese)
[7] Akiyama M, Abe S, Aoki N, et al. Flexural test of precast high-strength reinforced concrete pile prestressed with unbonded bars arranged at the center of the cross-section[J]. Engineering Structures, 2012, 34(1):259-270.
[8] Mohamed N, Soliman A M, Nehdi M L. Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes[J]. Engineering Structures, 2015, 84(2):287-299.
[9] Mohamed N, Nehdi M L. Rational finite element assisted design of precast steel fibre reinforced concrete pipes[J]. Engineering Structures, 2016, 124(10):196-206.
[10] Shiraishi I, Hayashi S, Kuwabara F, et al. A study on failure mechanism and ultimate strength of large diameter PHC pile[J]. Concrete Research & Technology, 1997, 8(1):85-93.
[11] Carbonell-Márquez J F, Gil-Martín L M, Fernández-Ruíz M A, et al. Effective area in tension stiffening of reinforced concrete piles subjected to flexure according to Eurocode 2[J]. Engineering Structures, 2014, 76(10):62-74.
[12] 赵升峰, 黄广龙, 马世强, 等. 预制混凝土支护管桩在深基坑工程中的应用[J]. 岩土工程学报, 2014, 36(增刊1):91-96. Zhao Shengfeng, Huang Guanglong, Ma Shiqiang, et al. Application of precast concrete pipe piles in a deep excavation project[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(Suppl 1):91-96. (in Chinese)
[13] Liu H L, Kong G Q, Ding X M, et al. Performances of large-diameter cast-in-place concrete pipe piles and pile groups under lateral loads[J]. Journal of Performance of Constructed Facilities, 2013, 27(2):191-202.
[14] 姚大立, 贾金青, 余芳. 有腹筋预应力超高强混凝土梁受剪承载力试验研究[J]. 湖南大学学报(自科版), 2015, 42(3):23-30. Yao Dali, Jia Jinqing, Yu Fang. Experimental study of the shear capacity of prestressed ultra-high reinforced concrete beams with stirrups[J]. Journal of Hunan University:Natural Sciences, 2015, 42(3):23-30. (in Chinese)
[15] 王铁成, 杨志坚, 赵海龙, 等. PHC管桩与承台连接节点试验研究与有限元分析[J]. 天津大学学报:自然科学与工程技术版, 2015, 48(6):527-534. Wang Tiecheng, Yang Zhijian, Zhao Hailong, et al. Experimental investigation and finite element analysis of prestressed high strength concrete pipe-pile cap connections[J]. Journal of Tianjin University (Science and Technology), 2015, 48(6):527-534. (in Chinese)
[16] 徐金, 何晶. 增加非预应力筋的混凝土管桩抗弯抗剪性能研究[J]. 工业建筑, 2016, 46(10):109-112. Xu Jin, He Jing. Research on flexural and shear behavior of prestressed concrete pipe pile with non-prestressed reinforcement[J]. Industrial Construction, 2016, 46(10):109-112. (in Chinese)
[17] 张忠苗, 刘俊伟, 谢志专, 等. 新型混凝土管桩抗弯剪性能试验研究[J]. 岩土工程学报, 2011, 33(增刊2):271-277. Zhang Zhongmiao, Liu Junwei, Xie Zhizhuan, et al. Experimental study on flexural and shearing properties of modified concrete pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Suppl 2):271-277. (in Chinese)
[18] 楼志军, 吴江斌, 宋青君, 等. 预应力高强混凝土管桩桩身抗剪承载力试验[J]. 上海大学学报(自然科学版), 2012, 18(6):645-650. Lou Zhijun, Wu Jiangbin, Song Qingjun, et al. Test of shear capacity of pre-stressed high-strength concrete pipe piles[J]. Journal of Shanghai University:Natural Sciences, 2012, 18(6):645-650. (in Chinese)
[19] DBJT 20-60, 混合配筋预应力混凝土管桩[S]. 四川:z四川省建筑标准设计办公室, 2013:5-12. DBJT 20-60, Prestressed concrete pipe pile with hybrid reinforcement[S]. Sichuan:Sichuan Standard Architectural Design Office, 2013:5-12. (in Chinese)
[20] 凌应轩, 李建宏, 黄晨. 预应力混凝土管桩抗剪承载力计算方法[J]. 工程与建设, 2007, 21(1):73-75. Ling Yingxuan, Li Jianhong, Huang Cheng. Calculation method of shear capacities for prestressed concrete piles[J]. Engineering and Construction, 2007, 21(1):73-75. (in Chinese)
[21] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010:54-64. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture and Building Press, 2010:54-64. (in Chinese)
[22] 吕志涛, 石平府, 周燕勤. 圆形、环形截面钢筋混凝土构件抗剪承载力的试验研究[J]. 建筑结构学报, 1995, 16(3):13-20. Lü Zhitao, Shi Pingfu, Zhou Yanqin. Experimental research on shear strength of reinforced concrete beams with circular and ring section[J]. Journal of Building Structures, 1995, 16(3):13-20. (in Chinese)
[23] EN 1992-1-1, Eurocode 2:Design of concrete structures -Part 1.1:General rules and rules for buildings[S]. Brussels:CEN, 2003:84-94.
[24] BS 8110-1, Structural use of concrete-Part 1:Code of practice for design and construction[S]. London:BSI, 1997:96-98.
[25] TB 10092-2017, 铁路桥涵混凝土结构设计规范[S]. 北京:中国铁道出版社, 2017:103-105. TB 10092-2017, Code for design of concrete structures of railway bridge and culvert[S]. Beijing:China Railway Publishing House, 2017:103-105. (in Chinese)
[26] 张开敬, 马忠国. 部分预应力混凝土约束箱梁斜截面抗剪强度的试验研究[J]. 土木工程学报, 1992, 25(1):21-28. Zhang Kaijing, Ma Zhongguo. Experimental investigation of shear strength of restrained PPC box girder[J]. China Civil Engineering Journal, 1992, 25(1):21-28. (in Chinese)
[1] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[2] 赵保庆, 王启明, 李志恒, 雷政. FAST圈梁支承结构性能理论与实验研究[J]. 工程力学, 2018, 35(S1): 200-204,211.
[3] 刘晓, 徐建烨, 王兵. 高温后中空夹层钢管混凝土柱压弯机理分析[J]. 工程力学, 2018, 35(S1): 40-45.
[4] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[5] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[6] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[7] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[8] 赵志, 戴靠山, 毛振西, 张采薇. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
[9] 王永亮, 鞠杨, 陈佳亮, 杨永明, Li C F. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17-25,36.
[10] 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89-96.
[11] 王综轶, ZHANG Yun-feng, 王元清, 杜新喜, 袁焕鑫. 交通信号支撑结构疲劳裂纹扩展有限元分析[J]. 工程力学, 2018, 35(9): 180-187.
[12] 齐欣, 许浒, 余志祥, 赵雷, 孟庆成. 柔性拦截结构中减压环动态力学性能试验研究[J]. 工程力学, 2018, 35(9): 188-196.
[13] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[14] 袁全, 袁驷, 李易, 闫维明, 邢沁妍. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018, 35(8): 9-13.
[15] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日