工程力学 ›› 2018, Vol. 35 ›› Issue (11): 223-231.doi: 10.6052/j.issn.1000-4750.2017.08.0665

• 其他工程学科 • 上一篇    下一篇

摄动法研究硬盘磁头滑块动态飞行特性

杨廷毅, 白雪   

  1. 山东理工大学机械工程学院, 淄博 255049
  • 收稿日期:2017-08-30 修回日期:2018-05-23 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 杨廷毅(1980-),男,贵州人,讲师,博士,硕导,从事纳米间隙气膜润滑理论、计算方法研究(E-mail:tingyiyang@126.com). E-mail:tingyiyang@126.com
  • 作者简介:白雪(1982-),女,山东人,讲师,博士,从事纳米间隙润滑、数值计算方法、先进制造技术理论和工艺研究(E-mail:xuebai2014@sdut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51505262)

STUDY ON DYNAMICAL FLYING CHARACTERISTICS OF SLDIER IN HARD DISK DRIVES BY PERTURBATION METHOND

YANG Ting-yi, BAI Xue   

  1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China
  • Received:2017-08-30 Revised:2018-05-23 Online:2018-11-07 Published:2018-11-07

摘要: 硬盘工作时,磁头滑块飞行在磁盘上方,其动态飞行特性对硬盘工作性能有重要影响。该文利用摄动法推导了磁头滑块的气膜刚度和阻尼摄动方程,且通过有限体积法进行求解,获得了初始摄动条件下的气膜刚度和阻尼矩阵。结合磁头滑块动力学方程,研究了扰动速度、扰动俯仰角和扰动侧倾角对磁头滑块动态飞行特性的影响。研究结果表明:①扰动速度会导致磁头滑块向磁盘表面作竖直方向的移动,增加了与磁盘接触碰撞的风险;②扰动俯仰角或侧倾角的增加都会导致磁头滑块振动幅度的增加,但扰动俯仰角更容易引起磁头滑块的振动。

关键词: 磁头滑块, 硬盘, 摄动法, 飞行特性, 气膜润滑方程

Abstract: In an operational hard disk drive (HDD), a slider is flying over a rotational disk and the dynamical flying characteristics of the slider have important effects on the performance of the HDD. By using the perturbation method, the perturbation equations for the gas film stiffness and gas film damping of the slider are derived, and the perturbation equations are numerically solved by the finite volume method (FVM). The gas film stiffness matrix and gas film damping matrix are obtained with an initial perturbation condition. Based on the dynamical equation of the slider, the effects of disturbance velocities, disturbance pitch angles and disturbance roll angles on the dynamical flying characteristics of the slider, are studied. The study results show that the perturbation velocities can cause the slider to move toward the disk, which increases the collision risk of the slider with the disk. The increases of disturbance pitch angles and disturbance roll angles will increase the vibration amplitudes of the flying parameters for the slider, and the disturbance angles are more likely to cause the vibration of the slider.

Key words: slider, hard disk drive, perturbation method, flying characteristic, gas film lubrication equation

中图分类号: 

  • TH123
[1] Allen A M, Bogy D B. Effects of shock on the head-disk interface[J]. IEEE Transactions on Magnetics, 1996, 32(5):3717-3719.
[2] Murthy A N, Feliss B, Gillis D, et al. Experimental and numerical investigation of shock response in 3.5 and 2.5 in. form factor hard disk drives[J]. Microsystem Technologies, 2006, 12(12):1109-1116.
[3] Jang G H, Seo C H. Finite-element shock analysis of an operating hard disk drive considering the flexibility of a spinning disk-pindle, a head-suspension-actuator, and a supporting structure[J]. IEEE Transactions on Magnetics, 2007, 43(9):3738-3743.
[4] Liu M J, Yap F F, Harmoko H. Shock response analysis of hard disk drive using flexible multibody dynamics formulation[J]. Microsystem Technologies, 2007, 13(8/9/10):1039-1045.
[5] Shi B J, Li H Q, Shu D W, et al. Nonlinear air-bearing slider modeling for hard disk drives with ultra-low flying heights[J]. Communications in Numerical Methods in Engineering, 2009, 25(10):1041-1054.
[6] Luo J, Shu D W, Shi B J, et al. Pulse width effect on the shock response of the hard disk drive[J]. Journal of Magnetism and Magnetic Materials, 2007, 34(8):1342-1349.
[7] Dai X, Zhang J, Shen S, et al. Study of formation and development of lubricant bridge in head-disk interface using molecular dynamic method[J]. IEEE Transactions on Magnetics, 2017, 53(3):1-4.
[8] McDaniel T W. Application of updated Landau-LifshitzBloch equations to heat-assisted magnetic recording[J]. IEEE Transactions on Magnetics, 2018, 54(2):1-11.
[9] Obukhov Y, Jubert P O, Bedau D, et al. 2-D decoding algorithms and recording techniques for bit patterned media feasibility demonstrations[J]. IEEE Transactions on Magnetics, 2016, 52(2):.1-9.
[10] Albrecht T R, Arora H, Ayanoor-Vitikkate V, et al. Bit-patterned magnetic recording:theory, media fabrication, and recording performance[J]. IEEE Transactions on Magnetics, 2015, 51(5):1-42.
[11] Hanchi J, Sonda P, Crone R. Dynamic fly performance of air bearing sliders on patterned media[J]. IEEE Transactions on Magnetics, 2010, 47(1):46-50.
[12] Li L, Bogy D B. Air bearing dynamic stability on bit patterned media disks[J]. Microsystem Technologies, 2013, 19(9/10):1401-1406.
[13] Dai X, Li H, Shen S, et al. Numerical simulation of bearing force over bit-patterned media using 3-D DSMC method[J]. IEEE Transactions on Magnetics, 2015, 51(11):1-4.
[14] Dai X, Li H, Shen S, et al. Study of perfluoropolyether lubricant consumption and recovery in heat assisted magnetic recording using molecular dynamics simulation method[J]. IEEE Transactions on Magnetics, 2017, 53(3):1-6.
[15] Fukui S, Sato A, Matsuoka H. Static and dynamic flying characteristics of a slider on bit-patterned media (dynamic responses based on frequency domain analysis)[J]. Microsystem Technologies, 2012, 18(9/10):1633-1643.
[16] Cui F, Li H, Shen S, et al. Simulation of air flow and particle trajectories in the head-disk interface[J]. IEEE Transactions on Magnetics, 2016, 52(12):1-5.
[17] 姚华平. 超薄磁头/磁盘气膜动态润滑特性分析[D]. 广州:华南理工大学, 2009. Yao Huaping. Study on the dynamic lubrication characteristics of the ultra thin gas film in hard disk drive[D]. Guangzhou:South China University of Technology, 2009. (in Chinese)
[18] 史宝军, 季家东, 杨廷毅. 粗糙度模式对硬盘气膜承载特性的影响[J]. 工程力学, 2012, 29(8):313-318. Shi Baojun, Ji Jiadong, Yang Tingyi. Effects of surface roughness modes on load carrying characteristics of air bearing films in hard disk drives[J]. Engineering Mechanics, 2012, 29(8):313-318. (in Chinese)
[19] 史宝军, 季家东, 杨廷毅. 表面粗糙度对硬盘超低飞高气膜静态特性的影响[J]. 机械工程学报, 2011, 47(11):93-99. Shi Baojun, Ji Jiadong, Yang Tingyi. Effects of surface roughness on static characteristics of air bearing films in hard disk drives with ultra-low flying heights[J]. Journal of Mechanical Engineering, 2011, 47(11):93-99. (in Chinese)
[20] Song N H, Meng Y G, Lin J. Flying-height measurement with a symmetrical common-path heterodyne interferometry method[J]. IEEE Transactions on Magnetics, 2010, 46(3):928-932.
[21] 王希超. 涉及气体稀薄效应的磁头磁盘空气轴承动力学特性分析[D]. 哈尔滨:哈尔滨工业大学, 2013. Wang Xichao. Analysis of air bearing dynamic characteristics involved the gas rarefaction effect[D]. Haerbin:Harbin Institute of Technology, 2013. (in Chinese)
[22] Shi B J, Yang T Y. Simplified model of Reynolds equation with linearized flow rate for ultra-thin gas film lubrication in hard disk drives[J]. Microsystem Technologies, 2010, 16(10):1727-1734.
[23] 白雪, 史宝军, 贺磊, 等. 头/盘界面均匀化Reynolds方程及其高效数值求解[J]. 工程力学, 2017, 34(8):25-30, 50. Bai Xue, Shi Baojun, He Lei, et al. Averaged Reynolds equation and its efficient numerical solution in the head/disk interface[J]. Engineering Mechanics, 2017, 34(8):25-30, 50. (in Chinese)
[24] Yang T Y, Shi B J, Ge P Q, et al. Adaptive grid generation technique of sub-5 nm flying height air bearing slider with clearance discontinuities[J]. Microsystem Technologies, 2012, 18(12):2017-2026.
[25] 郭影, 姜忻良, 曹东波, 等. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7):139-149. Guo Ying, Jiang Xinliang, Cao Dongbo, et al. A finite volume numerical simulation method for rock mass strength weakening by seepage water absorbing[J]. Engineering Mechanics, 2018, 35(7):139-149. (in Chinese)
[1] 闫维明, 石鲁宁, 何浩祥, 陈彦江. 带任意附加质量的变截面弹性支承梁动力特性的解析解[J]. 工程力学, 2016, 33(1): 47-57.
[2] 屈展, 王小增, 窦益华, 马文海. 非均匀载荷作用下偏心磨损套管稳定性准则[J]. 工程力学, 2015, 32(7): 249-256.
[3] 李秀梅,吴锋,张克实. 结构动力微分方程的一种高精度摄动解[J]. 工程力学, 2013, 30(5): 8-12.
[4] 黄登峰,陈力. 漂浮基柔性空间机械臂关节运动的分块神经网络控制及柔性振动模糊控制[J]. 工程力学, 2012, 29(5): 230-236,250.
[5] 安子军;张鹏;杨作梅. 摆线钢球行星传动系统参数振动特性研究[J]. 工程力学, 2012, 29(3): 244-251.
[6] 戴杰涛;张清东;秦 剑. 薄宽冷轧带钢局部板形屈曲行为解析研究[J]. 工程力学, 2011, 28(10): 236-242.
[7] 洪昭斌;陈 力. 柔性空间机械臂基于奇异摄动法的鲁棒跟踪控制和柔性振动主动控制[J]. 工程力学, 2010, 27(8): 191-198.
[8] 潘旦光;楼梦麟. 变截面Timoshenko简支梁动力特性的半解析解[J]. 工程力学, 2009, 26(8): 6-009,.
[9] 潘旦光;楼梦麟. 变参数土层一维固结的半解析解[J]. 工程力学, 2009, 26(1): 58-063,.
[10] 潘旦光;楼梦麟. 层状土层随机地震反应分析的近似解法[J]. 工程力学, 2008, 25(3): 0-095.
[11] 李正良;汪之松;李正英;熊 辉. 耗能减震结构的复模态矩阵摄动法[J]. 工程力学, 2007, 24(9): 0-018.
[12] 赵明华;贺炜;邹新军. 基桩后屈曲的摄动分析方法[J]. 工程力学, 2006, 23(12): 112-116,.
[13] 楼梦麟;洪婷婷. 预应力梁横向振动分析的模态摄动方法[J]. 工程力学, 2006, 23(1): 107-111.
[14] 李正良;范文亮;周志祥. 基于摄动法及等效线性化的耗能减震结构振型分解法[J]. 工程力学, 2005, 22(3): 16-20.
[15] 朱卫平. 复合载荷下波纹管横向非线性弯曲摄动有限元法[J]. 工程力学, 2003, 20(5): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
[4] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[5] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
[6] 郭惠勇;张陵;蒋健. 不同信息融合方法在结构损伤识别上的应用和分析[J]. 工程力学, 2006, 23(1): 28 -32,3 .
[7] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[8] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[9] 黄煜镔;钱觉时;周小平. 基于强度尺寸效应的准脆性材料脆性指标研究[J]. 工程力学, 2006, 23(1): 38 -42,5 .
[10] 李永莉;赵志岗;侯志奎. 卷积型加权残值法求解薄板的动力学问题[J]. 工程力学, 2006, 23(1): 43 -46 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日