工程力学 ›› 2018, Vol. 35 ›› Issue (11): 216-222.doi: 10.6052/j.issn.1000-4750.2017.08.0662

• 其他工程学科 • 上一篇    下一篇

基于给定参数的水力裂缝与天然裂缝相互作用结果的预测准则

王涛, 柳占立, 高岳, 庄茁   

  1. 清华大学航天航空学院, 北京 100084
  • 收稿日期:2017-08-30 修回日期:2018-01-10 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 柳占立(1981-),男,河南人,副教授,博士,主要从事计算力学和固体力学研究(E-mail:liuzhanli@tsinghua.edu.cn). E-mail:liuzhanli@tsinghua.edu.cn
  • 作者简介:王涛(1990-),男,宁夏人,博士生,主要从事计算力学研究(E-mail:tao-wang13@mials.tsinghua.edu.cn);高岳(1992-),男,陕西人,博士生,主要从事计算力学研究(E-mail:gaoy1992@gmail.com);庄茁(1952-),男,辽宁人,教授,博士,主要从事计算力学和固体力学研究(E-mail:zhuangz@tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金重点项目(115320058)

A PREDICTION CRITERION FOR THE INTERACTION BETWEEN HYDRAULIC FRACTURES AND NATURAL FRACTURES BASED ON GIVEN PARAMETERS

WANG Tao, LIU Zhan-li, GAO Yue, ZHUANG Zhuo   

  1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
  • Received:2017-08-30 Revised:2018-01-10 Online:2018-11-07 Published:2018-11-07

摘要: 水力裂缝(HF)和天然裂缝(NF)之间的相互作用在压裂裂缝性储层中扮演着重要角色,并可能导致复杂的裂缝网络。该文基于断裂力学理论提出了一个基于给定参数的显式表达式准则。在进行数值模拟、实验或现场施工之前,根据输入参数,应用本准则预测HF遇到NF后的穿透、打开或滑移行为,以及评估已有的水力压裂试验结果。根据准则可知,在高地应力差和高交汇角下,HF容易穿透NF;在低地应力差和低交汇角下,HF容易打开NF;在适当的应力差和交汇角度以及摩擦系数条件下,NF会在HF的作用下发生剪切滑移。高的岩石断裂韧性和短的HF长度(水平井筒到NF的距离)也会导致HF打开NF。相比其他隐式表达式或通过计算程序给出的准则,该文提出的准则只依赖于外部输入参数,具有显式表达方式,方便压裂实验和工程应用。

关键词: 水力压裂, 天然裂缝, 水平地应力差, 界面摩擦, 准则

Abstract: The interaction between hydraulic fracture (HF) and natural fracture (NF) plays a significant role in hydraulic fracturing and can lead to complex fracture networks. Based on the theory of fracture mechanics, this paper presents an explicit expression criterion of given parameters. This criterion is intended to predict the infiltration, openness and slippage of HF after it encounters NF, and to assess the results of existing hydraulic fracturing tests prior to conducting numerical simulations, experiments or field treatments. The criterion shows that HFs tend to penetrate NFs only under high differential horizontal stresses and high approach angles, while open NFs under lower differential horizontal stresses and lower approach angles. When the differential horizontal stresses, intersection angle and friction coefficient are appropriate, NFs will slip due to shear. In addition, high fracture toughness of rock and short HF length (distance between wellbore and NF) can also cause HF to open NF. Comparing with other implicit expressions or those given by computational programs, the proposed criterion relies only on external parameters, with explicit expressions to facilitate fracturing experiments and engineering applications.

Key words: hydraulic fracturing, natural fracture, horizontal differential stress, interface friction, criterion

中图分类号: 

  • TE355s
[1] 张广明, 刘合, 张劲, 等. 水平井水力压裂的三维有限元数值模拟研究[J]. 工程力学, 2011, 28(2):101-106. Zhang Guangming, Liu He, Zhang Jin, et al. Three-dimensional finite element numerical simulation of horizontal well hydraulic fracturing[J]. Engineering Mechanics, 2011, 28(2):101-106. (in Chinese)
[2] 盛茂, 李根生. 水力压裂过程的扩展有限元数值模拟方法[J]. 工程力学, 2014, 31(10):123-128. Sheng Mao, Li Gensheng. Extended finite element modeling of hydraulic fracture propagation[J]. Engineering Mechanics, 2014, 31(10):123-128. (in Chinese)
[3] 彪仿俊, 刘合, 张士诚, 等. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程力学, 2011, 28(10):228-235. Biao Fangjun, Liu He, Zhang Shicheng, et al. A numerical study of parameter influences on horizontal hydraulic fracture[J]. Engineering Mechanics, 2011, 28(10):228-235. (in Chinese)
[4] 柳占立, 王涛, 高岳, 等. 页岩水力压裂的关键力学问题[J]. 固体力学学报, 2016, 37(1):34-49. Liu Zhanli, Wang Tao, Gao Yue, et al. The key mechanical problems on hydraulic fracture in shale[J]. China Journal of Solids Mechanics, 2016, 37(1):34-39. (in Chinese)
[5] 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(03):257-264. Dai Jinxing, Ni Yunyan, Wu Xiaoqi. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3):257-264. (in Chinese)
[6] 王永亮, 柳占立, 林三春, 等. 基于连续损伤的岩石渗流有限元分析[J]. 工程力学, 2016, 33(11):29-37. Wang Yongliang, Liu Zhanli, Lin Sanchun, et al. Finite element analysis of seepage in rock based on continuum damage evolution[J]. Engineering Mechanics, 2016, 33(11):29-37. (in Chinese)
[7] Zeng X, Wei Y. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking[J]. Journal of the Mechanics and Physics of Solids, 2017, 101:235-249. https://doi.org/10.1016/j.jmps.2016.12.012.
[8] Zhou J, Chen M, Jin Y, et al. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7):1143-1152.
[9] Renshaw C E, Pollard D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International Journal of Rock Mechanics and Mining Sciences, 1995, 32(3):237-249.
[10] Blanton T L. An Experimental study of interaction between hydraulically induced and pre-existing fractures[C]//Proc. SPE Unconventional Gas Recovery between hydraulically induced and pre-existing fractures[C]//Proc. SPE Unconventional Gas Recovery Symposium, Society of Petroleum Engineers, Pittsburgh, Pennsylvania, 1982.
[11] Warpinski N R, Teufel L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2):209-220.
[12] Gu H, Weng X, Lund J B, et al. Suarez-rivera. hydraulic fracture crossing natural fracture at nonorthogonal angles:a criterion and its validation[J]. SPE Journal, 2012, 27(1):20-26.
[13] Khoei A R, Vahab M, Hirmand M. Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique[J]. International Journal of Fracture, 2016, 197(1):1-24.
[14] Xu D, Liu Z, Zhuang Z, et al. Study on interaction between induced and natural fractures by extended finite element method[J]. Science China Physics, Mechanics & Astronomy, 2016, 60(2):024611. https://doi.org/10.1016/j.jmps.2016.12.012.
[15] Shi F, Wang X, Liu C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173:64-90. https://doi.org/10.1016/j.jmps.2016.12.012.
[16] Blanton T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]//Proc. SPE Unconventional Gas Technology Symposium, Society of Petroleum Engineers. Louisville, Kentucky, 1986.
[17] 程万, 金衍, 陈勉, 等. 三维空间中水力裂缝穿透天然裂缝的判别准则[J]. 石油勘探与开发, 2014, 41(3):336-340. Cheng Wan, Jin Yan, Chen Mian, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J]. Petroleum Exploration and Development, 2014, 41(3):336-340. (in Chinese)
[18] Galybin A N, Mukhamediev S A. Fracture development on a weak interface ahead of a fluid-driven crack[J]. Engineering Fracture Mechanics, 2014, 129:90-101. https://doi.org/10.1016/j.jmps.2016.12.012.
[19] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9):1-12. Yu Zhiwu, Wu Lingyu, Shan Zhi. Models for deterministic and stochastic damage constitutions of concrete-a short review[J]. Engineering Mechanics, 2017, 34(9):1-12. (in Chinese)
[1] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[2] 王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67.
[3] 周甲佳, 潘金龙, 姚少科, 赵军, 张哲. 高强高性能混凝土三轴拉压压力学性能试验研究[J]. 工程力学, 2018, 35(4): 144-150.
[4] 黄景琦, 杜修力, 马超, 赵密, 刘晶波, 金浏. 岩石三维强度准则的研究[J]. 工程力学, 2018, 35(3): 30-40.
[5] 孙振宇, 张顶立, 房倩, 台启民, 于富才. 基于超前加固的深埋隧道围岩力学特性研究[J]. 工程力学, 2018, 35(2): 92-104.
[6] 陈昊东, 王青松, 孙金华. 火灾环境下玻璃首次破裂时间的模拟预测[J]. 工程力学, 2017, 34(增刊): 210-213.
[7] 易伟建, 刘彪. 混凝土板柱节点冲切承载力的极限分析[J]. 工程力学, 2017, 34(8): 125-132,143.
[8] 朱太勇, 周广东, 张欢, 吴二军, 陈鑫. 钢箱梁正交异性桥面板疲劳评估全空间S-N曲线研究[J]. 工程力学, 2017, 34(11): 210-217.
[9] 南波, 武岳, 孙浩田. 缠绕型CFRP圆管轴压力学性能[J]. 工程力学, 2017, 34(1): 92-100.
[10] 黄耀英, 包腾飞, 李春光, 孙冠华. 考虑塑性徐变的高混凝土坝实测应变转换应力探讨[J]. 工程力学, 2016, 33(9): 103-108.
[11] 孙玉进, 宋二祥, 杨军. 基于非线性强度准则的土工结构安全系数有限元计算[J]. 工程力学, 2016, 33(7): 84-91.
[12] 李顺群, 夏锦红, 张培印. 初始应力线和原状土的修正Mohr-Coulomb准则[J]. 工程力学, 2016, 33(7): 116-122.
[13] 潘金龙, 何佶轩, 王路平, 周甲佳. ECC双轴压力学性能及破坏准则试验研究[J]. 工程力学, 2016, 33(6): 186-193.
[14] 王璀瑾, 董伟, 王强, 吴智敏, 曲秀华. 混凝土I型裂缝扩展准则比较研究[J]. 工程力学, 2016, 33(5): 89-96,105.
[15] 李晶, 谢新宇, 张继发, 周建, 应宏伟. 基于亚塑性理论建立土体各向异性本构模型的一种新途径[J]. 工程力学, 2016, 33(2): 152-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[2] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[3] 郭薇薇;夏禾;徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006, 23(2): 103 -110 .
[4] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
[5] 贺瑞;秦权. 产生时程分析用的高质量地面运动时程的新方法[J]. 工程力学, 2006, 23(8): 12 -18 .
[6] 秦士洪;杨鸿飞;黄音;李唐宁. 基于变刚度的协调扭转分析方法及应用[J]. 工程力学, 2006, 23(8): 25 -30,3 .
[7] 顾明;叶丰. 高层建筑风致响应的简化分析方法[J]. 工程力学, 2006, 23(8): 57 -61,4 .
[8] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[9] 许福友;陈艾荣. 平板颤振导数的参数弹性研究[J]. 工程力学, 2006, 23(7): 60 -64 .
[10] 曹树谦;;陈予恕;. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68 -079 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日