工程力学 ›› 2018, Vol. 35 ›› Issue (11): 197-205,222.doi: 10.6052/j.issn.1000-4750.2017.08.0652

• 机械工程学科 • 上一篇    下一篇

纤维增强复合薄板非线性内共振表征测试方法研究

李晖1,2, 梁晓龙1,2, 常永乐1,2, 闻邦椿1,2   

  1. 1. 东北大学机械工程与自动化学院, 辽宁, 沈阳 110819;
    2. 东北大学航空动力装备振动及控制教育部重点实验室, 辽宁, 沈阳 110819
  • 收稿日期:2017-08-25 修回日期:2018-03-19 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 李晖(1982-),男,内蒙古人,副教授,博士,主要从事复合结构减震降噪研究(E-mail:lh200300206@163.com). E-mail:lh200300206@163.com
  • 作者简介:梁晓龙(1989-),男,辽宁人,硕士生,主要从事复合材料振动测试研究(E-mail:308361550@qq.com);常永乐(1987-),男,河北人,硕士生,主要从事机械结构损伤测试研(E-mail:gj_gj@live.cn);闻邦椿(1930-),男,浙江人,中国科学院院士,博士,主要从事振动利用工程研究(E-mail:avonlea@163.com).
  • 基金资助:
    国家自然科学基金项目(51505070);中央高校基本科研业务费专项资金项目(N150304011,N160313002,N160312001,N170302001);东北大学航空动力装备振动及控制教育部重点实验室研究基金项目(VCAME201603)

STUDY ON CHARACTERIZATION TEST METHOD OF NONLINEAR INTERNAL RESONANCE OF FIBER-REINFORCED COMPOSTE THIN PLATE

LI Hui1,2, LIANG Xiao-long1,2, CHANG Yong-le1,2, WEN Bang-chun1,2   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Liaoning, Shenyang 110819, China;
    2. Key Laboratory of Vibration and Control of Aeronautical Power Equipment of the Ministry of Education, Northeastern University, Liaoning, Shenyang 110819, China
  • Received:2017-08-25 Revised:2018-03-19 Online:2018-11-07 Published:2018-11-07

摘要: 提出了基于整数倍协调法的纤维增强复合薄板非线性内共振的表征测试方法。首先,为使复合薄板的前两阶固有频率呈现1:2、1:3等整数倍关系,基于该方法推导出复合薄板内共振固有频率的显示表达式,预先确定符合内共振形成条件的尺寸参数。然后,阐述了纤维增强复合薄板非线性内共振的表征测试原理,并总结概括出一套合理、规范的测试流程。最后,以TC300碳纤维/树脂基复合薄板作为研究对象,并对其1:2内共振现象进行了表征测试研究。结果表明,当以第二阶固有频率进行激励时,可发现该类型复合薄板1:2内共振的非线性振动能量传递行为。但随着激励幅度的增加,其低阶固有频率处的共振幅值相对于高阶固有频率处的共振幅值在逐渐减小,即内共振现象在逐渐减弱,其振动形态逐渐变为单倍周期运动。

关键词: 纤维增强复合薄板, 内共振, 整数倍协调法, 表征测试方法, 相图轨迹

Abstract: The characterization test method of nonlinear internal resonance for a fiber-reinforced composite thin plate (FRCP) based on integer-multiple coordination technique was proposed. Firstly, in order to make the first two natural frequencies of such a composite plate have a ratio of 1:2 or 1:3, the explicit expressions of internal resonance frequencies were derived, and the dimension parameters conforming to the formation condition of internal resonance phenomenon were also pre-determined. Then, the characterization test principle of internal resonance of FRCP was illustrated, so that a reasonable and standard test procedure can be summarized. Finally, the TC300 carbon fiber/resin composite plate was taken as a research object, and its 1:2 internal resonance phenomenon was studied. It has been found that when the composite plate was excited by the second natural frequency, the nonlinear vibration energy transfer behavior can be discovered under 1:2 internal resonance state. However, with the increase of exciting level, the resonance amplitude at the lower natural frequency would decrease, compared with the one of higher natural frequency, i.e., the internal resonance phenomenon of FRCP was becoming weak, and its vibration motion gradually changed into a singular period.

Key words: fiber-reinforced composite thin plate, internal resonance, integer-multiple coordination method, characterization test method, phase-plane diagram

中图分类号: 

  • TB535+.1
[1] 胡明勇, 王安稳. 纤维增强粘弹性复合材料层合板的自由振动和应力分析[J]. 工程力学, 2010, 27(8):10-14. Hu Mingyong, Wang Anwen. Free vibration and stresses analysis of fiber-reinforced viscoelastic composite laminated plates[J]. Engineering Mechanics, 2010, 27(8):10-14. (in Chinese)
[2] 谭萍, 聂国隽. 曲线纤维增强复合材料圆环板的非轴对称弯曲问题[J]. 工程力学, 2016, 33(3):239-247. Tan Ping, Nie Guojun. Asymmetric bending of curvilinear-fiber reinforced composite annular plates[J]. Engineering Mechanics, 2016, 33(3):239-247. (in Chinese)
[3] Sayed M, Kamel M. 1:2 and 1:3 internal resonance active absorber for non-linear vibrating system[J]. Applied Mathematic Modelling, 2012, 36(1):310-322.
[4] Wang X, Qin Z. Nonlinear modal interactions in composite thin-walled beam structures with simultaneous 1:2 internal and 1:1 external resonances[J]. Nonlinear Dynamics, 2016, 86(2):1381-1405.
[5] Witt A, Gorelik A. Oscillations of an elastic pendulum as an example of the oscillations of two parametrically coupled linear systems[J]. Journal of Technical Physics, 1933, 3(2/3):294-307.
[6] Kyoyul Oh. A theoretical and experimental study of modal interactions in metallic and laminated composite plates[D]. Virginia Polytechnic Institute and State University, 1994,12.
[7] Abe A, Kobayashi Y, Yamada G. Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance[J]. Journal of Sound and Vibration, 2007, 304:957-968.
[8] Zhang W, Yao Z, Yao M. Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance[J]. Science China Technological Sciences, 2009, 52(3):731-42.
[9] Sayed M, Mousa A A. Second-order approximation of angle-ply composite laminated thin plate under combined excitations[J]. Communications in Nonlinear Science & Numerical Simulation, 2012, 17(12):5201-5216.
[10] Chen J, Zhang W, Sun M, et al. Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance[J]. Journal of Mechanical Science & Technology, 2016, 30(9):4133-4142.
[11] 王延庆, 梁力, 郭星辉, 等. 基于多元L-P法的复合材料圆柱壳内共振分析[J]. 工程力学, 2012, 29(7):29-34. Wang Yanqing, Liang Li, Guo Xinghui, et al. Analysis of internal resonance of composite circular cylindrical shells based on the multidimensional L-P method[J]. Engineering Mechanics, 2012, 29(7):29-34. (in Chinese)
[12] 陶斐, 冯志华, 陈汐, 等. 复合材料层合板的动力学建模与1:3内共振[J]. 噪声与振动控制, 2015, 35(1):78-82. Tao Fei, Feng Zhihua, Chen Xi, et al. Dynamic modeling and 1:3 internal resonances of composite laminated plates[J]. Noise and Vibration Control, 2015, 35(1):78-82. (in Chinese)
[13] 郝育新, 张伟. 四边简支FGM矩形板非线性振动中的内共振[J]. 振动与冲击, 2009, 28(6):153-154. Hao Yuxin, Zhang Wei. Nonlinear vibration of functionally graded material plate under different internal resonance[J]. Journal of Vibration and Shock, 2009, 28(6):153-154. (in Chinese)
[14] 高慧. 复合材料悬臂板的非线性研究[D]. 北京:北京工业大学, 2009. Gao Hui. Nonlinear dynamics of composite laminated cantilever plate[D]. Beijing:Beijing University of Technology, 2009. (in Chinese)
[15] 李晖, 吴怀帅, 薛鹏程, 等. 纤维增强悬臂复合薄板固有特性分析与验证[J]. 东北大学学报(自然科学版), 2017, 38(12):1731-1735. Li Hui, Wu Huaishuai, Xue Pengcheng, et al. Analysis and verification of natural characteristic of fiber-reinforced thin cantilever plate[J]. Journal of Northeastern University (Natural Science), 2017, 38(12):1731-1735. (in Chinese)
[1] 赵旖旎, 丁千. 基于刚柔耦合模型的干摩擦制动系统振动分析[J]. 工程力学, 2016, 33(3): 222-231.
[2] 梁峰, 包日东. 输流管道含有内共振的横向受迫振动研究[J]. 工程力学, 2015, 32(4): 185-190.
[3] 霍涛, 晏致涛, 李正良, 颜志淼. 考虑弹性边界曲梁模型的覆冰输电线舞动分析[J]. 工程力学, 2015, 32(1): 137-144.
[4] 蔡君艳,刘习军,张素侠. 覆冰四分裂导线舞动近似解析解分析[J]. 工程力学, 2013, 30(5): 305-310.
[5] 王延庆, 梁力, 郭星辉, 杨坤. 基于多元L-P法的复合材料圆柱壳内共振分析[J]. 工程力学, 2012, 29(7): 29-34.
[6] 刘习军;王立刚;贾启芬. 一种由干摩擦引起的车床切削颤振[J]. 工程力学, 2005, 22(1): 107-112,.
[7] 陈水生;孙炳楠. 斜拉桥拉索模态耦合非线性共振响应特性[J]. 工程力学, 2003, 20(1): 137-143.
[8] 蒋丽忠;赵跃宇;刘光栋. 非惯性参考系中弹性薄板纵横振动相互耦合时的内共振分析[J]. 工程力学, 1999, 16(3): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
[4] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[5] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
[6] 郭惠勇;张陵;蒋健. 不同信息融合方法在结构损伤识别上的应用和分析[J]. 工程力学, 2006, 23(1): 28 -32,3 .
[7] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[8] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[9] 黄煜镔;钱觉时;周小平. 基于强度尺寸效应的准脆性材料脆性指标研究[J]. 工程力学, 2006, 23(1): 38 -42,5 .
[10] 李永莉;赵志岗;侯志奎. 卷积型加权残值法求解薄板的动力学问题[J]. 工程力学, 2006, 23(1): 43 -46 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日