工程力学 ›› 2018, Vol. 35 ›› Issue (11): 172-180.doi: 10.6052/j.issn.1000-4750.2017.08.0647

• 土木工程学科 • 上一篇    下一篇

藏式石砌体受压应力-应变全曲线特征研究

滕东宇1,2, 杨娜1   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 中科建(北京)工程技术研究院有限公司, 北京 100000
  • 收稿日期:2017-08-24 修回日期:2018-02-05 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 杨娜(1974-),女,辽宁人,教授,工学博士,博导,主要从事钢结构和古建筑研究工作(E-mail:nyang@bjtu.edu.cn). E-mail:nyang@bjtu.edu.cn
  • 作者简介:滕东宇(1986-),男,吉林人,工程师,博士生,主要从事古建筑和装配式建筑研究工作(E-mail:tengdongyu@foxmail.com).
  • 基金资助:
    国家自然科学基金面上项目(51778045);北京自然科学基金重点项目(8151003);国家自然科学基金优秀青年基金项目(51422801)

RESEARCH ON THE FEATURES OF COMPLETE STRESS-STRAIN CURVES OF TIBETAN-STYLE STONE MASONRY UNDER COMPRESSIVE LOAD

TENG Dong-yu1,2, YANG Na1   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. China Science Construction(Beijing) Institute of Engineering Technology Co., Ltd, Beijing 100000, China
  • Received:2017-08-24 Revised:2018-02-05 Online:2018-11-07 Published:2018-11-07

摘要: 为了研究藏式石砌体轴心受压下的变形特征和损伤机理,对2组共8个三石叠放的棱柱体试件进行了轴心受压试验。2组试件分别反映普通毛石砌筑风格和藏式风格。得到了试件的开裂及破坏形态、变形特征和受压全过程应力-应变曲线。试验结果表明,藏式石砌体具有阶段性变形和损伤特征,应力-应变曲线与其他类型砌体存在差异。根据试验现象和试验数据提出了藏式石砌体轴心受压的开裂前应力-应变曲线本构关系表达式,采用两段式二次多项式来表达。该表达式与实验结果吻合度较好。对试验的适用性进行了探讨,提出了对后续试验的建议。

关键词: 石砌体, 抗压试验, 破坏模式, 本构关系, 棱柱体, 应力-应变曲线

Abstract: To find out the deformation characteristics and damage mechanism of compressed Tibetan-style stone masonry, an experimental research was carried out on 2 groups (8 specimens in all) stacked prisms under axial compression. One group simulates normal rubble stone masonry and the other simulates the Tibetan-style stone masonry. The crack and deformation characteristics, the failure modes, and the complete stress-strain curves were obtained. The research results show that the Tibetan-style stone masonry have staged deformation and damage characteristics, and the complete stress-strain curve is different from other types of masonry. Based on the experimental phenomena and the experimental data, the compressive constitutive relationship before cracking of the Tibetan-style stone masonry is proposed. The equations can be expressed by a two-segment curve with quadratic polynomials. The constitutive relationship is close to the experimental results. The applicability of prism testing was discussed. Suggestions for follow-up tests were proposed.

Key words: stone masonry, compressive test, failure mode, constitutive relationship, prism, stress-stain curve

中图分类号: 

  • TU363
[1] 施楚贤. 砌体结构理论与设计[M]. 第三版. 北京:中国建筑工业出版社. 2014:50-53. Shi Chuxian. The theory and design of masonry strcture[M]. 3rd ed. Beijing:China Architecture & Building Press, 2014:50-53. (In Chinese)
[2] 黄靓, 王辉, 陈胜云. 低强度砂浆灌孔砌块砌体抗压性能试验研究[J]. 工程力学, 2012, 29(10):157-161. Huang Liang, Wang Hui, Chen Shengyun. Experimental research on compressive behavior of grouted block masonry with low-strength mortar[J]. Engineering Mechanics, 2012, 29(10):157-161. (in Chinese).
[3] Page A W, Shrive N G. A critical assessment of compression tests for hollow block masonry[J]. Masonry International, 1988, 5(2):64-70.
[4] Vasconcelos. Experimental investigations on the mechanics of stone masonry:Characterization of granites and behavior of ancient masonry shear walls[D]. Braga, Portugal:University of Minho. 2005.
[5] Vasconcelos G, Lourenço P B. Experimental characterization of stone masonry in shear and compression[J]. Construction and Building Materials, 2009, 23(11):3337-3345.
[6] VenuMadhava Rao K, Reddy B V V, Jagadish K S. Strength characteristics of stone masonry[J]. Materials and Structures, 1997, 30(4):233-237.
[7] Nart M Naghoj, The effect of height-to-width ratio on the strength of concrete-backed stone masonry prisms[J]. Contemporary Engineering Sciences, 2013, 6:261-271.
[8] Pinho F F S, Lúcio V J G, Baião M F C. Experimental analysis of rubble stone masonry walls strengthened by transverse confinement under compression and compression-shear loadings[J]. International Journal of Architectural Heritage, 2018, 12(1):91-113.
[9] Almeida C, Guedes J P, Arêde A, et al. Physical characterization and compression tests of one leaf stone masonry walls[J]. Construction and Building Materials, 2012, 30(3340):188-197.
[10] 彭斌, 刘卫东, 杨伟波. 在役历史建筑砌体承重墙抗震性能试验研究[J]. 工程力学, 2009, 26(12):112-126. Peng Bin, Liu Weidong, Yang Weibo. Experimental investigation on seismic behaviors of load-bearing masonry walls in in-service historical architecture[J]. Engineering Mechanics, 2009, 26(12):112-126. (in Chinese)
[11] Aguilar R, Montesinos M, RamírezMechanical E, et al. Testing in adobe bricks and earthen mortar from the archaeological complex of Huaca de la Luna in Perú[C]. Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016.
[12] ASTM C469/C469M-14, Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression[S]. ASTM International, West Conshohocken, 2014.
[13] GB/T 50129-2011, 砌体基本力学性能试验方法标准[S]. 北京:中国建筑工业出版社, 2011. GB/T 50129-2011, Standard of experiment method for mechanical properties of masonry[S]. Beijing:China Architecture & Building Press, 2011.
[14] 过镇海, 时旭东. 钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003:19. Guo Zhenhai, Shi Xudong. Reinforced concrete theory and analyse[M]. Beijing:Tsinghua University Press, 2003:19. (in Chinese)
[15] 秦士洪, 倪校军, 曹桓铭, 等. 蒸压粉煤灰砖砌体应力-应变全曲线研究[J]. 建筑结构学报, 2010, 31(8):94-100. Qin Shihong, Ni Xiaojun, Cao Hengming, et al. Research on stress-strain in full curves of autoclaved fly ash brick masonry[J]. Journal of Building Structures, 2010, 31(8):94-100. (in Chinese).
[16] 阿肯江·托呼提, 沙吾列提·拜开依, 曹耿. 土坯砌体单轴受压本构模型研究[J]. 工程力学, 2012, 29(12):295-301. Akenjiang TUOHUTI, Sawulet BEKEY, CAO Geng. Study on uniaxial compression constitutive models of adobe masonry[J]. Engineering Mechanics, 2012, 29(12):295-301. (in Chinese)
[17] JGJ 70-2009, 建筑砂浆基本性能试验方法[S]. 北京:中国建筑工业出版社, 2009:10-37. JGJ 70-2009, Standard for test method of basic properties of construction mortar[S]. Beijing:China Architecture and Building Press, 2009:10-37. (in Chinese)
[18] 江近仁, 谢君斐. 中国科学院土木建筑研究所报告第2号. 砖石结构研究[M]. 北京:科学出版社, 1956:8-11. Jiang Jinren, Xie Junfei. The report of civil engineering institute of Chinese Academy of Science No. 2. The study of masonry structure[M]. Beijing:Science Press, 1956:8-11. (in Chinese)
[19] 梁建国, 洪丽, 肖逸夫, 等. 砖和砂浆的本构关系试验研究[C]. 全国砌体结构领域基本理论与工程应用学术会议, 2012:155-164. Liang Jianguo, Hong Li, Xiao Yifu, et al. Experimental research of stress-strain relationship on brick and mortar[C]. Basic theory and engineering application of masonry structure. Hangzhou:Zhejiang University Press. 2012:155-164. (in Chinese)
[20] Naraine K, Sinha S. Model for cyclic compressive behavior of brick masonry[J]. Aci Structural Journal, 1991, 88(5):592-602.
[21] 朱伯龙. 砌体结构设计原理[M]. 上海:同济大学出版社, 1991:13-28. Zhu Bolong. Design principles of masonry structure[M]. Shanghai:Tongji University Press, 1991:13-28. (in Chinese)
[1] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[2] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124.
[3] 杨璐, 卫璇, 张有振, 常笑, 蒋庆林. 不锈钢母材及其焊缝金属材料单拉本构关系研究[J]. 工程力学, 2018, 35(5): 125-130,151.
[4] 周甲佳, 潘金龙, 姚少科, 赵军, 张哲. 高强高性能混凝土三轴拉压压力学性能试验研究[J]. 工程力学, 2018, 35(4): 144-150.
[5] 尹涛, 蔡力勋, 陈辉, 姚迪. TA17合金薄片材料毫小试样疲劳性能研究[J]. 工程力学, 2018, 35(11): 206-215.
[6] 连鸣, 苏明周, 李慎. Y形高强钢组合偏心支撑框架结构基于性能的塑性设计方法研究[J]. 工程力学, 2017, 34(5): 148-162.
[7] 王萌, 钱凤霞, 杨维国, 杨璐. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J]. 工程力学, 2017, 34(2): 60-68.
[8] 郑山锁, 程明超, 宋哲盟, 马德龙. 酸雨对再生骨料混凝土实心砖砌体抗压性能影响试验研究[J]. 工程力学, 2017, 34(2): 94-101.
[9] 刘柯, 韩强, 周雨龙, 丁兆旺. 可复位桥梁外剪力键性能试验及承载能力评估[J]. 工程力学, 2016, 33(9): 171-178,211.
[10] 杜明瑞, 靖洪文, 苏海健, 朱谭谭. 孔洞形状对砂岩强度及破坏特征的影响[J]. 工程力学, 2016, 33(7): 190-196,219.
[11] 潘金龙, 何佶轩, 王路平, 周甲佳. ECC双轴压力学性能及破坏准则试验研究[J]. 工程力学, 2016, 33(6): 186-193.
[12] 彭云强, 蔡力勋, 包陈, 姚迪. 基于材料全程本构关系对延性断裂韧性的数值模拟方法与应用[J]. 工程力学, 2016, 33(5): 11-17.
[13] 咸庆军, 童乐为. 型钢混凝土梁梁连接节点疲劳强度分析[J]. 工程力学, 2016, 33(4): 188-194,204.
[14] 孙利民, 谢文. 超大跨斜拉桥多点振动台试验研究[J]. 工程力学, 2016, 33(11): 38-48.
[15] 祁爽, 蔡力勋, 包陈, 姚迪. 基于等效全程单轴本构关系的应力三轴度分析[J]. 工程力学, 2015, 32(增刊): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[2] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[3] 郭薇薇;夏禾;徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006, 23(2): 103 -110 .
[4] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
[5] 贺瑞;秦权. 产生时程分析用的高质量地面运动时程的新方法[J]. 工程力学, 2006, 23(8): 12 -18 .
[6] 顾明;叶丰. 高层建筑风致响应的简化分析方法[J]. 工程力学, 2006, 23(8): 57 -61,4 .
[7] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[8] 许福友;陈艾荣. 平板颤振导数的参数弹性研究[J]. 工程力学, 2006, 23(7): 60 -64 .
[9] 曹树谦;;陈予恕;. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68 -079 .
[10] 陈伟球;严 蔚. 混凝土结构服役智能化的若干研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ): 91 -105 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日