工程力学 ›› 2018, Vol. 35 ›› Issue (11): 162-171.doi: 10.6052/j.issn.1000-4750.2017.08.0640

• 土木工程学科 • 上一篇    下一篇

一种非比例振型阻尼模型及在大规模非线性分析中的应用

曹胜涛1,2, 李志山1, 刘付钧3   

  1. 1. 广州大学广东省地震工程与应用技术重点实验室, 广州 510405;
    2. 中国建筑科学研究院, 北京 100013;
    3. 广州容柏生建筑结构设计事务所, 广州 510170
  • 收稿日期:2017-08-23 修回日期:2018-03-16 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 李志山(1966-),男,广东人,教授,博士,博导,主要从事结构抗震减震方面的数值分析研究(E-mail:lizhishan@gzhu.edu.cn). E-mail:lizhishan@gzhu.edu.cn
  • 作者简介:曹胜涛(1985-),男,河北人,博士生,主要从事非线性有限元和结构振动控制研究(E-mail:caoshengtao@cabrtech.com);刘付钧(1970-),男,广东人,教授级高级工程师,博士,广州容柏生建筑结构设计事务所常务副总工程师,主要从事建筑结构设计与研究(E-mail:liufujun@gzrbs.com).
  • 基金资助:
    十三五高性能计算重点专项项目(2016YFB0200605)

A NON-PROPORTIONAL MODAL DAMPING MODEL AND ITS APPLICATION IN NONLINEAR ANALYSIS OF LARGE-SCALE STRUCTURES

CAO Sheng-tao1,2, LI Zhi-shan1, LIU Fu-jun3   

  1. 1. Earthquake Engineering Research & Test Center of Guangzhou University, Guangzhou 510405, China;
    2. China Academy of Building Research, Beijing 100013, China;
    3. RBS Architectural Engineering Design Associates, Guangzhou 510170, China
  • Received:2017-08-23 Revised:2018-03-16 Online:2018-11-07 Published:2018-11-07

摘要: 该文通过有限元模型的节点振型阻尼比构造了一种非比例振型阻尼模型;给出了非线性显式格式中该文模型阻尼力的高效算法,并结合实际工程对显式求解的稳定性进行了分析。将该文提出的非比例阻尼模型和高效算法在自主研发的CPU+GPU并行非线性分析软件中进行实现,对有限元模型自由度数达到百万量级的超高层钢-混凝土混合结构广西东盟塔进行动力时程分析,对该文并行算法的效率和非比例阻尼对结构动力响应的影响进行了研究。

关键词: 节点振型阻尼比, 非比例振型阻尼模型, 非线性显式动力分析, CPU+GPU并行计算, 混合结构

Abstract: A non-proportional modal damping model was proposed by the nodal mode-damping-ratio of a finite element model. The efficient algorithm of the damping force was presented in a nonlinear explicit format. Base on practical engineering, the stability of the explicit format was analyzed. The non-proportional damping model and efficient algorithm were implemented in CPU+GPU parallel nonlinear software. The dynamic time history response of a super high-rise steel-concrete structure, Guangxi Dongmeng tower, with millions degrees of freedom was analyzed by this software. The efficiency of parallel algorithms and the effect of non-proportional damping on the dynamic response of the structure were studied.

Key words: nodal mode-damping-ratio, non-proportional modal damping model, nonlinear explicit dynamic analysis, CPU+GPU parallel computing, mixed structure

中图分类号: 

  • TU311.3
[1] 丁洁民, 巢斯, 赵昕, 等. 上海中心大厦结构分析中若干关键问题[J]. 建筑结构学报, 2010, 31(6):122-131. Ding Jiemin, Chao Si, Zhao Xin, et al. Critical issuse of structural analysis for the Shanghai center project[J]. Journal of Building Structures, 2010, 31(6):122-131. (in Chinese)
[2] 黄维, 钱江, 周知, 等. 钢-混凝土竖向混合结构抗震设计阻尼比取值分析[J]. 建筑结构学报, 2014, 35(增刊2):8-15. Huang Wei, Qian Jiang, Zhou Zhi, et al. Seismic design of uniform damping ratio for steel-concrete vertical mixed structures[J]. Journal of Building Structures, 2014, 35(Suppl 2):8-15. (in Chinese)
[3] 吕西林, 张杰. 钢和混凝土竖向混合结构阻尼特性研究[J]. 土木工程学报, 2012, 45(3):10-16. Lu Xilin, Zhang Jie. Damping behavior of vertical structures with upper steel and lower concrete components[J]. China Civil Engineering Journal, 2012, 45(3):10-16. (in Chinese)
[4] 周福霖. 工程结构减震控制[M]. 北京:地震出版社, 1997:7-13. Zhou Fulin. Seismic control in engineering structures[M]. Beijing:Earthquake Publishing House, 1997:7-13. (in Chinese)
[5] 聂建国, 樊健生. 广义组合结构及其发展展望[J]. 建筑结构学报, 2006, 27(6):1-8. Nie Jianguo, Fan Jiansheng. The development and prospect of generalized composite structures[J]. Journal of Building Structures, 2006, 27(6):1-8. (in Chinese)
[6] 钟善桐. 钢-混凝土组合结构在我国的研究与应用[J]. 钢结构, 2000, 15(4):41-46. Zhong Shantong. Research and application of steel-concrete composite structures in our country[J]. Steel Construction, 2000, 15(4):41-46. (in Chinese)
[7] 张相庭. 结构阻尼耗能假设及在振动计算中的应用[J]. 振动与冲击, 1982, 1(2):12-21. Zhang Xiangting. Hypothesis on energy loss due to structural damping and its application to the vibration calculation[J]. Journal of Vibration & Shock, 1982, 1(2):12-21. (in Chinese)
[8] 李小军, 侯春林, 潘蓉, 等. 阻尼矩阵选取对核电厂结构地震响应的影响分析[J]. 振动与冲击, 2015, 34(1):110-116. Li Xiaojun, Hou Chunlin, Pan Rong, et al. Effect of damping matrix selection on seismic response of nuclear power plant structures[J]. Journal of Vibration & Shock, 2015, 34(1):110-116. (in Chinese)
[9] Wilson E, Penzien J. Evaluation of orthogonal damping matrices[J]. International Journal for Numerical Methods in Engineering, 1972, 4(1):5-10.
[10] Enrique Luco J. A note on classical damping matrices[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(4):615-626.
[11] 周国良, 李小军, 刘必灯, 等. 大质量法在多点激励分析中的应用、误差分析与改进[J]. 工程力学, 2011,28(1):48-54. Zhou Guoliang, Li Xiaojun, Liu Bideng, et al. Error analysis and improvements of large mass method used in multi-support seismic excitation analysis[J]. Engineering Mechanics, 2011, 28(1):48-54. (in Chinese)
[12] Pant D R, Wijeyewickrema A C, Elgawady M A. Appropriate viscous damping for nonlinear time-history analysis of base-isolated reinforced concrete buildings[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(15):2321-2339.
[13] Yang D B, Zhang Y G, Wu J Z. Computation of Rayleigh damping coefficients in seismic time-history analysis of spatial structures[J]. Journal of the International Association for Shell and Spatial Structures, 2010, 51(2):125-135.
[14] 潘旦光. 地震反应分析中Rayleigh阻尼系数的优化解[J]. 工程力学, 2013, 30(11):15-20. Pan Danguang. An optimization solution for Rayleigh damping coefficients in seismic response analysis[J]. Engineering Mechanics, 2013, 30(11):15-20. (in Chinese)
[15] 潘旦光, 高莉莉. Rayleigh阻尼系数解法比较及对结构地震反应影响[J]. 工程力学, 2015, 32(6):192-199. Pan Danguang, Gao Lili. Comparison of determination methods for Rayleigh damping coefficients and effects on seismic responses of structures[J]. Engineering Mechanics, 2015, 32(6):192-199. (in Chinese)
[16] Caughey T K, O'Kelly M E J. Classical normal modes in damped linear dynamic systems[J]. ASME Journal of Applied Mechanics, 1965, 32:583-588.
[17] Clough R W, Penzien J. Dynamics of structures[M]. NewYork:McGraw Hill Inc, 1993:234-245.
[18] 董军, 邓洪洲, 王肇民. 结构动力分析阻尼模型研究[J]. 世界地震工程, 2000, 16(4):63-69. Dong Jun, Deng Hongzhou, Wang Zhaomin. Studies on the damping models for structural dynamic time history analysis[J]. World Information on Earthquake Engineering, 2000, 16(4):63-69. (in Chinese)
[19] 周国伟, 张志强, 李爱群, 等. 混合结构时程分析中的阻尼比计算研究[J]. 振动与冲击, 2012, 31(16):117-121. Zhou Guowei, Zhang Zhiqiang, Li Aiqun, et al. Damping ratio of composite structures used in time-history analysis[J]. Journal of Vibration & Shock, 2012, 31(16):117-121. (in Chinese)
[20] 黄维, 钱江, 周知. 竖向混合结构模态阻尼比计算研究[J]. 振动与冲击, 2014, 33(13):13-18. Huang Wei, Qian Jiang, Zhou Zhi. Equivalent modal damping ratio for vertically mixed structures[J]. Journal of Vibration & Shock, 2014, 33(13):13-18. (in Chinese)
[21] Liang Z, Lee G C. Representation of damping matrix[J]. Journal of Engineering Mechanics, 1991, 117(5):1005-1020.
[22] 韦勇, 陈国平. 结构非比例阻尼矩阵的建模和识别[J]. 南京航空航天大学学报, 2004, 36(6):740-743. Wei Yong, Chen Guoping. Modeling and identifying of non-proportional damping of structures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2004, 36(6):740-743. (in Chinese)
[23] 闫维明, 刘季, 周永程. 非正交阻尼体系的阻尼矩阵及其动力反应分析[J]. 哈尔滨建筑大学学报, 1995, 28(6):8-14. Yan Weiming, Liu Ji, Zhou Yongcheng. Damping matrix of non-proportional damped system and its dynamic response analysis[J]. Journal of Harbin University of Architecture and Engineering, 1995, 28(6):8-14. (in Chinese)
[24] 梁超锋, 欧进萍. 结构阻尼与材料阻尼的关系[J]. 地震工程与工程振动, 2006, 26(1):49-55. Liang Chaofeng, Ou Jinping. Relationship between structural damping and material damping[J]. Earthquake Engineering & Engineering Vibration, 2006, 26(1):49-55. (in Chinese)
[25] Raggett J D. Estimating damping of real structures[J]. ASCE Journal of the Structural Division, 1975, 101(9):1823-1835.
[26] Johnson C D, Kienholz D A. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. AIAA Journal, 1982, 20(9):1284-1290.
[27] 薛彦涛, 韦承基, 孙仁范, 等. 采用不同材料加层时结构阻尼比计算方法(应变能法)[J]. 工程抗震与加固改造, 2008, 30(2):91-95. Xue Yantao, Wei Chengji, Sun Renfan, et al. Calculation method for damping ratio of different story added structures (strain energy method)[J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(2):91-95. (in Chinese)
[28] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[29] Guide specifications for seismic isolation design[S]. Washington D.C.:American Association of State Highway and Transportation Officials, 2010.
[30] Manual for menshin design of highway bridges[S]. Japan:Public Work Research Institute, 1992.
[31] 王进廷, 杜修力. 有阻尼体系动力分析的一种显式差分法[J]. 工程力学, 2002, 19(3):109-112. Wang Jinting, Du Xiuli. An explicit difference method for dynamic analysis of a structure system with damping[J]. Engineering Mechanics, 2002, 19(3):109-112. (in Chinese)
[32] Kirk D B, Wen-Mei W H. Programming massively parallel processors:a hands-on approach[M]. USA:Elsevier Science, 2017:19-41.
[33] 曹胜涛, 李志山, 刘春明, 等. 大规模建筑结构非线性显式动力分析的振型阻尼实现[J]. 建筑结构, 2016, 46(1):30-37. Cao Shengtao, Li Zhishan, Liu Chunming, et al. On the applying modal damping in nonlinear explicit dynamic analysis of large-scale structure[J]. Building Structure, 2016, 2016(1):30-37. (in Chinese)
[34] Belytschko T, Bachrach W E. Efficient implementation of quadrilaterals with high coarse-mesh accuracy[J]. Computer Methods in Applied Mechanics and Engineering, 1986, 54(3):279-301.
[35] Belytschko T, Stolarski H, Carpenter N. A C0 triangular plate element with one-point quadrature[J]. International Journal for Numerical Methods in Engineering, 1984, 20(5):787-802.
[36] Belytschko T, Wong B L, Chiang H Y. Advances in one-point quadrature shell elements[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 96(1):93-107.
[37] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[38] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3):299-326.
[39] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2011. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[1] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[2] 黄维, 钱江, 周知. 竖向混合结构转换柱构件抗剪承载力研究[J]. 工程力学, 2018, 35(4): 96-106.
[3] 杜宁军, 白国良, 刘林, 赵欣刚. 带斜撑的空冷钢-混凝土混合结构滞回性能试验研究与分析[J]. 工程力学, 2017, 34(5): 205-215.
[4] 汪维安,李乔,赵灿晖,庄卫林. 混合结构PBL剪力键的荷载-滑移特征曲线研究[J]. 工程力学, 2015, 32(3): 57-65,81.
[5] 黄维,钱江,周知. 基于Rayleigh阻尼模型的竖向混合结构设计阻尼比研究[J]. 工程力学, 2015, 32(10): 60-67.
[6] 汪维安, 李乔, 赵灿晖, 庄卫林. 基于PPP-BOTDA技术的PBL剪力键群应变测试研究[J]. 工程力学, 2015, 32(1): 111-119.
[7] 何益斌, 李艳, 沈蒲生. 基于性能的高层混合结构地震易损性分析[J]. 工程力学, 2013, 30(8): 142-147,162.
[8] 伍 凯 薛建阳 赵鸿铁. SRC-RC竖向混合结构转换柱侧移刚度试验研究[J]. 工程力学, 2012, 29(12): 307-315.
[9] 白国良;白涌滔;李红星;赵春莲;朱丽华. 大型火电厂分散剪力墙-SRC框排架结构抗震性能试验研究[J]. 工程力学, 2011, 28(6): 74-080,.
[10] 伍 凯;薛建阳;赵鸿铁. SRC-RC竖向混合结构转换柱破坏机理与抗剪承载力计算[J]. 工程力学, 2011, 28(10): 133-138.
[11] 李丕宁;;秦 荣. 基于性能的高层钢-混凝土混合结构住宅设计[J]. 工程力学, 2007, 24(增Ⅰ): 0-093.
[12] 郑宏宇;苏益声;邓志恒. 混合结构房屋现浇楼板裂缝的有限元数值分析[J]. 工程力学, 2007, 24(2): 0-125,.
[13] 沈蒲生;龚胡广. 多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J]. 工程力学, 2006, 23(8): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭彦林;陈国栋;缪友武. 加劲钢板剪力墙弹性抗剪屈曲性能研究[J]. 工程力学, 2006, 23(2): 84 -91,5 .
[2] 赵明华;刘齐建;曹喜仁;邹新军. 按桩顶沉降量控制超长灌注桩竖向承载力研究[J]. 工程力学, 2006, 23(2): 92 -96 .
[3] 崔玉红;秦庆华;王建山. HT有限元在Ⅰ、Ⅱ与Ⅲ型复合弹性断裂问题中的应用[J]. 工程力学, 2006, 23(3): 104 -110 .
[4] 袁振伟;褚福磊;王三保. 横向振动圆柱体在流体中的动力学特性[J]. 工程力学, 2006, 23(8): 49 -52 .
[5] 李 璟;韩大建. 屋盖风振响应功率谱及背景与共振响应的分离[J]. 工程力学, 2010, 27(6): 65 -071, .
[6] 谢 凡;沈蒲生. 钢筋混凝土剪力墙多垂直杆单元模型力学性质分析及其改进[J]. 工程力学, 2010, 27(6): 77 -082 .
[7] 迟福东;王进廷;金 峰&#;. 实时耦联动力试验的时滞稳定性分析[J]. 工程力学, 2010, 27(9): 12 -016, .
[8] 史文海;李正农;黄 斌. 12自由度4结点高精度矩形单元[J]. 工程力学, 2010, 27(9): 22 -026 .
[9] 罗素蓉;李 豪. 纤维自密实混凝土断裂能试验研究[J]. 工程力学, 2010, 27(12): 119 -123 .
[10] 刘艳辉;赵世春;强士中. 阻尼比对延性需求谱的影响[J]. 工程力学, 2011, 28(5): 200 -206 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日