工程力学 ›› 2018, Vol. 35 ›› Issue (11): 155-161,171.doi: 10.6052/j.issn.1000-4750.2017.08.0631

• 土木工程学科 • 上一篇    下一篇

基于试验的斜交网格-核心筒结构概率地震易损性分析

吴迪1, 熊焱2   

  1. 1. 广州大学工程抗震研究中心, 广州 510405;
    2. 华南理工大学亚热带建筑科学国家重点实验室, 广州 510640
  • 收稿日期:2017-08-23 修回日期:2018-02-05 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 熊焱(1978-),女,江西人,副教授,博士,硕导,从事结构防灾减灾研究(E-mail:xyan@scut.edu.cn). E-mail:xyan@scut.edu.cn
  • 作者简介:吴迪(1978-),男,江西人,副研究员,博士,硕导,从事结构防灾减灾研究(E-mail:11795234@qq.com).
  • 基金资助:
    国家自然科学基金项目(51778160,51108105);广东省教育厅特色创新项目(2016KTSCX101);广州市科技计划项目(201707010258);广州市番禺区珠江科技新星专项项目(2013-专15-3.05);国家重点研发计划项目(2017YFC0703600,2016YFC0701500)

TEST-BASED PROBABILITSTIC SEISMIC FRAGILITY ANALYSIS OF DIAGRID-CORE TUBE STRUCTURES

WU Di1, XIONG Yan2   

  1. 1. Earthquake Engineering Research & Test Center, Guangzhou University, Guangzhou, 510405, China;
    2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
  • Received:2017-08-23 Revised:2018-02-05 Online:2018-11-07 Published:2018-11-07

摘要: 利用外部网状斜交框架和内部钢筋混凝土核心筒,斜交网格-核心筒结构形成具有较强抗侧刚度的筒中筒结构形式,被广泛应用于超高层建筑结构。采用模拟地震振动台试验获得不同地震动水准下模型结构的地震动响应结果。在结构抗震可靠度的经验和计算分析方法基础上,分析不同水准下结构发生各级破坏的概率,研究斜交网格-核心筒结构体系的整体抗震性能。最后,由振动台试验结果显示斜交网格结构构件的截面尺寸改变所在楼层的斜柱先于底部楼层的斜柱发生破坏。提出基于模型结构的振动台试验的概率地震易损性分析方法,对不同地震设防水准下原型结构的破坏概率进行研究,获得斜交网格-核心筒原型结构的概率地震易损性水平。

关键词: 网格框架-核心筒, 振动台试验, 地震分析, 易损性, 高层建筑抗震

Abstract: By utilizing an external diagrid frame and an inner reinforced concrete core-tube, the diagrid-core tube structure forms a tube-tube structure with strong lateral stiffness. This structure form has been widely used in super high rise building structures. The seismic response results of the model structure with different seismic fortification levels have been obtained by the simulated earthquake shaking table test. Based on the empirical and analytical methods for the seismic reliability analysis of structures, the failure probabilities of the structure with different seismic fortification levels were analyzed, and the seismic performance and reliability of the diagrid-core tube structure system are studied. The shaking table test results show that the inclined columns in the layer where the section sizes of the structural members of the diagrid are changed were damaged before the inclined columns in the substructure. Furthermore, a shaking table test-based probabilistic seismic fragility analysis method was put forward. The damage probabilities of the prototype structure under different seismic fortification levels have been studied. The probabilistic seismic fragility level of the diagrid-core tube prototype structure system is obtained.

Key words: diagonal frame-core tube, shaking table test, seismic risk, fragility, aseismic of high-rise building

中图分类号: 

  • TU318.1
[1] Ali M M. Evolution of concrete skyscrapers:from Ingalls to Jin mao[J]. Electronic Journal of Structural Engineering, 2001, 1(1):2-14.
[2] Huxtable A L. The tall building artistically reconsidered:the search for a skyscraper style[J]. Architectural Record (U.S.A.), 1984, 172(1):63-79.
[3] Ali M M, Moon K S. Structural developments in tall buildings:current trends and future prospects[J]. Architectural Science Review, 2007, 50(3):205-223.
[4] 韩小雷, 唐剑秋, 黄艺燕, 等. 钢管混凝土巨型斜交网格筒体结构非线性分析[J]. 地震工程与工程振动, 2009, 29(4):77-84. Han Xiaolei, Tang Jianqiu, Huang Yiyan, et al. Nonlinear analysis of huge oblique crossing lattice structure with concrete filled steel tube[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(4):77-84. (in Chinese)
[5] 滕军, 郭伟亮, 张浩, 等. 斜交网格筒-核心筒结构地震非线性性能研究[J]. 土木工程学报, 2012, 45(8):90-96. Teng Jun, Guo Weiliang, Zhang Hao, et al. Study of the nonlinear seismic performance of diagrid tube-core tube structures[J]. China Civil Engineering Journal, 2012, 45(8):90-96. (in Chinese)
[6] John S, Leslie R. IBM Building[R]. USA:RIGIDIZED METALS, 2015:1-3.
[7] 黄襄云, 周福霖, 金建敏, 等. 广州新电视塔结构模型振动台试验研究[J]. 土木工程学报, 2010, 43(8):21-29. Huang Xiangyun, Zhou Fulin, Jin Jianmin, et al. Shaking table test of Guangzhou new TV tower[J]. China Civil Engineering Journal, 2010, 43(8):21-29. (in Chinese)
[8] 方小丹, 韦宏, 江毅, 等. 广州西塔结构抗震设计[J]. 建筑结构学报, 2010, 31(1):47-55. Fang Xiaodan, Wei Hong, Jiang Yi, et al. Seismic design of the Guangzhou West Tower[J]. Journal of Building Structures, 2010, 31(1):47-55. (in Chinese)
[9] 张小冬, 刘界鹏. 大连中国石油大厦结构方案优化设计[J]. 建筑结构学报, 2009, 30(增刊1):27-33. Zhang Xiaodong, Liu Jiepeng. Optimum design on Dalian China petrol tower[J]. Journal of Building Structures, 2009, 30(Suppl1):27-33. (in Chinese)
[10] Rossetto T. Derivation of vulnerability functions for European-type RC structures based on observational data[J]. Engineering Structures, 2003, 25(10):1241-1263.
[11] Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of engineering mechanics, 2000, 126(12):1224-1231.
[12] Ellingwood B R, Celik O C, Kinali K. Fragility assessment of building structural systems in Mid-America[J]. Earthquake Engineering Structural Dynamics, 2007, 36(13):1935-1952.
[13] 吕大刚, 于晓辉, 潘峰, 等. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 26(1):7-15. Lu Dagang, Yu Xiaohui, Pan Feng, et al. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World Earthquake Engineering, 2010, 26(1):7-15. (in Chinese)
[14] Wu Di, Tesfamariam S, Stiemer S F, et al. Comparison of seismic performance of a RC frame building before and after the Wcenchuan earthquake in Sichuan province[J]. Journal of Performance of Constructed Facilities, 2013, 29(1):1-7.
[15] Applied Technology Council (ATC-13). Earthquake damage evaluation data for California[R]. Redwood City, California:Applied Technology, 1985:1-492.
[16] 叶列平, 陆新征, 马千里, 等. 混凝土结构抗震非线性分析模型, 方法及算例[J]. 工程力学, 2006, 23(增刊2):131-140. Ye Lieping, Lu Xinzheng, Ma Qianli, et.al. Seismic nonlinear analytical models, methods and examples for concrete structures[J]. Engineering Mechanics, 2006, 23(Suppl 2):131-140. (in Chinese)
[17] 陆新征, 林旭川, 叶列平, 等. 地震下高层建筑连续倒塌的数值模型研究[J]. 工程力学, 2010, 27(11):64-70. Lu Xinzheng, Lin Xuchuan, Ye Lieping, et.al. Numerical Models for the Progressive Collapse of High-rise Buildings due to Earthquake[J]. Engineering Mechanics, 2010, 27(11):64-70. (in Chinese)
[18] 吕西林, 苏宁粉, 周颖. 复杂高层结构基于增量动力分析法的地震易损性分析[J]. 地震工程与工程振动, 2012, 32(5):19-25. Lu Xilin, Su Ningfen, Zhou Ying. IDA-based seismic fragility analysis of a complex high-rise structure[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(5):19-25. (in Chinese)
[19] 卢啸. 超高巨柱-核心筒-伸臂结构地震灾变及抗震性能研究[D]. 北京:清华大学, 2013. Lu Xiao. Study on the collapse simulation and seismic performance of super tall mega column-core tubeoutrigger buildings[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[20] 张令心, 徐梓洋, 刘洁平, 等. 基于增量动力分析的超高层混合结构地震易损性分析[J]. 建筑结构学报, 2016, 37(9):19-25. Zhang Lingxin, Xu Ziyang, Liu Jieping, et al. Seismic vulnerability analysis of super high-rise hybrid structures based on incremental dynamic analysis[J]. Journal of Building Structures, 2016, 37(9):19-25. (in Chinese)
[21] Singhal A, Kiremidjian A S. Method for probabilistic evaluation of seismic structural damage[J]. Journal of Structural Engineering, 1996, 122(12):1459-1467.
[22] Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4):526-533.
[23] Ghobarah A. On drift limits associated with different damage levels[C]//Performance-Based Seismic Design Concepts and Implementation:Proceedings of the International Workshop, Bled, Slovenia:PEER Press, 2004, 28:321-332.
[24] Wong S. Seismic performance of reinforced concrete wall structures under high axial load with particular application to low-to moderate seismic regions[D]. Hong Kong:The Thesis of Master of Philosophy at University of Hong Kong, 2005:1-249.
[25] Wen Y K, Ellingwood B R, Bracci J M. Vulnerability function framework for consequence-based engineering[R]. USA:MAE Center Report, 2004:1-101.
[26] Celik O C, Ellingwood B R. Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions[J]. Journal of structural engineering, 2009, 135(4):414-424.
[27] Wu D, Xiong Y. Tests Study of a 1:20 Scale Steelconcrete Hybrid Structure[J]. Procedia Engineering, 2017, 210(1):441-448.
[28] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:建筑工业出版社, 2011. JGJ 3-2010, Technical Specification for Concrete Structures of Tall Building[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[29] 周颖, 吕西林. 建筑结构振动台模型试验方法与技术[M]. 北京:科学出版社, 2012. Zhou Ying, Lu Xilin. Method and technology for shaking table model test of building structure[M]. Beijing:Science Press, 2012. (in Chinese)
[30] Wen Y K, Ellingwood B R, Veneziano D, et al. Uncertainty modeling in earthquake engineering[R]. USA:MAE center project FD-2 report, 2003:1-113.
[31] 施炜, 叶列平, 陆新征, 等. 不同抗震设防RC框架结构抗倒塌能力研究[J]. 工程力学, 2011, 28(3):41-48. Shi Wei, Ye Lieping, Lu Xinzheng, et al. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(1):41-48. (in Chinese)
[32] 于晓辉, 吕大刚, 范峰. 基于易损性指数的钢筋混凝土框架结构地震损伤评估[J]. 工程力学, 2017, 34(1):69-75. Yu Xiaohui, Lu Dagang, Fan Feng. Seismic damage assessment of RC frame structures based on vulnerability index[J]. Engineering Mechanics, 2017, 34(1):69-75. (in Chinese)
[1] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[2] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134-139.
[3] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[4] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
[5] 李万润, 王辉, 孙玉萍, 杜永峰, 王雪平, 吴忠铁. 考虑隔震支座特性的隔震结构多尺度模拟与试验验证[J]. 工程力学, 2018, 35(6): 115-122,131.
[6] 甄伟, 盛平, 杨庆山, 田春雨. 嘉德艺术中心结构模型振动台试验与竖向地震作用分析[J]. 工程力学, 2018, 35(6): 200-208,230.
[7] 姚新强, 孙柏涛, 杨在林, 陈宇坤, 杨绪连. 地震灾害农居易损性新方法研究[J]. 工程力学, 2018, 35(6): 191-199.
[8] 孙小云, 韩建平, 党育, 周颖. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5): 193-203.
[9] 魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51.
[10] 陈力波, 黄才贵, 谷音. 基于改进响应面法的公路简支梁桥地震易损性分析[J]. 工程力学, 2018, 35(4): 208-218.
[11] 孙晓丹, 曾程, 杨成, 李永恒, 常志旺. 基于有限断层随机地震动合成的高速路网地震危险性分析[J]. 工程力学, 2018, 35(4): 186-199.
[12] 李勇, 闫维明, 刘晶波, 解梦飞. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学, 2018, 35(4): 52-60,86.
[13] 王树和, 张举兵. 基于地震损失风险钢筋混凝土框架结构弯矩增大系数评估[J]. 工程力学, 2018, 35(3): 132-140.
[14] 周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. 工程力学, 2018, 35(11): 134-145.
[15] 陈力波, 王嘉嘉, 上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学, 2018, 35(1): 160-171,181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭彦林;陈国栋;缪友武. 加劲钢板剪力墙弹性抗剪屈曲性能研究[J]. 工程力学, 2006, 23(2): 84 -91,5 .
[2] 赵明华;刘齐建;曹喜仁;邹新军. 按桩顶沉降量控制超长灌注桩竖向承载力研究[J]. 工程力学, 2006, 23(2): 92 -96 .
[3] 崔玉红;秦庆华;王建山. HT有限元在Ⅰ、Ⅱ与Ⅲ型复合弹性断裂问题中的应用[J]. 工程力学, 2006, 23(3): 104 -110 .
[4] 袁振伟;褚福磊;王三保. 横向振动圆柱体在流体中的动力学特性[J]. 工程力学, 2006, 23(8): 49 -52 .
[5] 李 璟;韩大建. 屋盖风振响应功率谱及背景与共振响应的分离[J]. 工程力学, 2010, 27(6): 65 -071, .
[6] 谢 凡;沈蒲生. 钢筋混凝土剪力墙多垂直杆单元模型力学性质分析及其改进[J]. 工程力学, 2010, 27(6): 77 -082 .
[7] 迟福东;王进廷;金 峰&#;. 实时耦联动力试验的时滞稳定性分析[J]. 工程力学, 2010, 27(9): 12 -016, .
[8] 史文海;李正农;黄 斌. 12自由度4结点高精度矩形单元[J]. 工程力学, 2010, 27(9): 22 -026 .
[9] 罗素蓉;李 豪. 纤维自密实混凝土断裂能试验研究[J]. 工程力学, 2010, 27(12): 119 -123 .
[10] 刘艳辉;赵世春;强士中. 阻尼比对延性需求谱的影响[J]. 工程力学, 2011, 28(5): 200 -206 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日