工程力学 ›› 2018, Vol. 35 ›› Issue (11): 35-44.doi: 10.6052/j.issn.1000-4750.2017.08.0624

• 土木工程学科 • 上一篇    下一篇

盾构隧道环间接头弯曲状态非线性研究

张景, 何川, 耿萍, 陈枰良, 卢志楷   

  1. 西南交通大学交通隧道工程教育部重点实验室, 成都 610031
  • 收稿日期:2017-08-13 修回日期:2017-12-12 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 何川(1964-),男,重庆人,教授,博士,博导,从事隧道结构设计理论、结构安全及营运控制研究(E-mail:chuanhe21@163.com). E-mail:chuanhe21@163.com
  • 作者简介:张景(1988-),男,山西人,博士生,从事隧道及地下工程设计理论研究(E-mail:zhangjing147@foxmail.com);耿萍(1964-),女,四川人,教授,博士,博导,主要从事隧道及地下工程结构理论和抗减震设计研究(E-mail:13551258484@139.com);陈枰良(1991-),男,四川人,硕士生,主要从事隧道结构及地下工程抗减震研究(E-mail:cpltea@qq.com);卢志楷(1992-),男,河南人,硕士生,主要从事隧道结构设计理论研究(E-mail:344073262@qq.com).
  • 基金资助:
    国家重点研发计划项目(2016YFC0802200);国家自然科学基金项目(51378433,51578457);天津市科技计划项目(16YDLJSF00040)

STUDY ON BENDING STATE NONLINEARITY OF SHIELD-TUNNEL RING JOINTS

ZHANG Jing, HE Chuan, GENG Ping, CHEN Ping-liang, LU Zhi-kai   

  1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu Sichuan 610031, China
  • Received:2017-08-13 Revised:2017-12-12 Online:2018-11-07 Published:2018-11-07

摘要: 为探明盾构隧道环间接头抗弯性能在纵向弯矩、轴力组合作用下的状态非线性规律,将环间接头力学行为划分为7种变形模式及3种受力状态,分别推导了环间接头转角-纵向弯矩-纵向轴力三者关系的解析表达式与环间接头在不同弯曲状态间转变时的临界内力表达式,并以三维有限元计算对本文提出的解析公式进行验证。研究结果表明:盾构隧道特有的“管片环+接头”非连续结构形式导致环间接头弯曲行为具有状态非线性特征,不同弯矩、轴力组合作用下,盾构隧道环间接头变形模式于不同状态间转变并伴随抗弯刚度突变;纯弯作用下环间接头抗弯刚度为定值,轴向压力可使接头抗弯刚度较纯弯时提高数倍乃至无穷大;拉弯作用下接头抗弯性能维持在两个固定水平值之间,接缝面被完全拉开时环间接头抗弯刚度会随之被削弱数倍。

关键词: 盾构隧道, 环间接头, 抗弯刚度, 状态非线性, 纵向内力

Abstract: In order to investigate the bending state nonlinearity of shield-tunnel ring joints under the composite action of longitudinal internal forces, the mechanical behavior of ring joints were classified to 7 deformation modes and 3 internal force states. The analytical expressions involved ring joints rotation angle and longitudinal internal forces for each deformation mode were derived. At the same time, the critical moment expression of the ring joints between different deformation modes was developed. FEM method was employed to verify the results obtained by an analytic derivation. The results showed that bending state nonlinearity was one inherent feature of ring joints because of the discontinuous structure of a shield tunnel. The deformation mode and bending stiffness of shield-tunnel ring joints changed under different internal force combinations. In a pure bending state, the ring joints' bending stiffness had a constant value, and it could be enlarged several times under a compression-bending state, even be enlarged to infinity. The bending stiffness of ring joints under a tension-bending state would be limited to two constant values which were both smaller than that under a pure bending state, and it would be decreased several times when ring joint surface was completely opened.

Key words: shield tunnel, ring joints, bending stiffness, state nonlinearity, longitudinal internal force

中图分类号: 

  • U451+.4
[1] 小泉淳, 村上博智, 西野健三. ツールドトネルの轴方向特性のモデルイヒにつぃて[C]//东京:土木学会, 1988:79-88. Koizumi A, Murakami H, Nishino K. Study on the analytical model of shield tunnel in longitudinal direction[C]//Tokyo:Japan Society Of Civil Engineers, 1988:79-88. (in Japanese)
[2] Cui Qinglong, Wu Huaina, Xu Yeshuang, et al. Longitudinal deformation pattern of shield tunnel structure and analytical models:a review[C]//Hokkaido:Japanese Geotechnical Society Special Publication, 2015:1-4.
[3] 何川, 周济民, 封坤, 等. 基于接头非线性抗弯刚度的盾构隧道迭代算法的实现与应用[M]. 土木工程学报, 2012, 45(3):166-173. He Chuan, Zhou Jimin, Feng Kun, et al. An iterative algorithm based on segment joint stiffness nonlinearity and application for shield tunnel structures[M]. China Civil Engineering Journal, 2012, 45(3):166-173. (in Chinese)
[4] 徐国文, 王士民, 汪冬兵. 基于接头抗弯刚度非线性的壳-弹簧-接触-地层模型的建立[J]. 工程力学, 2016, 33(12):158-166. Xu Guowen, Wang Shimin, Wang Dongbing. Shellspring-contact-ground model based on segment joint stiffness nonlinearity[J]. Engineering Mechanics, 2016, 33(12):158-166.
[5] 董新平, 解枫赞. 一类盾构管片接头破坏历程的解析解[J]. 岩土工程学报, 2013, 35(10):1870-1875. Dong Xinping, Xie Fengzan. Analytical solution of segment joint model for segmented tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10):1870-1875. (in Chinese)
[6] 吴全立, 王梦恕, 董新平. 盾构管片接头非线性转动刚度研究[J]. 土木工程学报, 2014, 47(4):109-114. Wu Quanli, Wang Mengshu, Dong Xinping. Study on nonlinear rotational stiffness of shield segment joint[J]. China Civil Engineering Journal, 2014, 47(4):109-114. (in Chinese)
[7] 刘四进, 封坤, 何川, 等. 大断面盾构隧道管片接头抗弯力学模型研究[J]. 工程力学, 2015, 32(12):215-224. Liu Sijin, Feng Kun, He Chuan, et al. Study on the bending mechanical model of segmental joint in shield tunnel with large cross-section[J]. Engineering Mechanics, 2015, 32(12):215-224. (in Chinese)
[8] 封坤, 何川, 肖明清. 高轴压作用下盾构隧道复杂接缝面管片接头抗弯试验[J]. 土木工程学报, 2016, 49(8):99-110, 132. Feng Kun, He Chuan, Xiao Mingqing. Bending tests of segment joint with complex interface for shield tunnel under high axial pressure[J]. China Civil Engineering Journal, 2016, 49(8):99-110, 132. (in Chinese)
[9] 封坤, 何川, 邹育麟. 大断面越江盾构隧道管片拼装方式对结构内力的影响效应研究[J]. 工程力学, 2012, 29(6):114-124. Feng Kun, He Chuan, Zou Yulin. Study on the effect of assembling method on the linner force of segmental lining for cross-river shield tunnel with large cross-section[J]. Engineering Mechanics, 2012, 29(6):114-124. (in Chinese)
[10] Shi Chenghua, Cao Chengyong, Lei Mingfeng, et al. Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2016, 51(01):175-188.
[11] Liu Nina, Huang Qiangbing, Ma Yujie, et al. experimental study of a segmented metro tunnel in a ground fissure area[J]. Soil Dynamics and Earthquake Engineering, 2017, 100(6):410-416.
[12] 志波由纪夫, 川島一彦, 大日方尚己, 加納尚史. ツー ルドトンネルの耐震解析に用いる長手方向覆工剛性の評価法[C]//东京:土木学会, 1988:319-327. Shiba Yukio, Kawashima Kazuhiko, Obinata Naomi, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[C]//Tokyo:Japan Society of Civil Engineers, 1988:319-327. (in Japanese)
[13] 西野健三,吉田和夫,小泉淳. ツールドトンネル緃断方向の現場載荷試験とその考察[C]//东京:土木学会, 1986:131-140. Nishino K, Yoshida K, Koizumi A. In-situ tests and consideration on shield tunnel in the longitudinal direction[C]//Tokyo:Japan Society of Civil Engineers, 1986:131-140. (in Japanese)
[14] 钟小春, 张金荣, 秦建设, 等. 盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J]. 岩土力学, 2011, 32(01):132-136. Zhong Xiaochun, Zhang Jinrong, Qin Jianshe, et al. Simplified calculation model for longitudinal equivalent bending stiffness of shield tunnel and its influence factors' analysis[J]. Rock and Soil Mechanics, 2011, 32(01):132-136. (in Chinese)
[15] 叶飞, 何川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 33(12):1870-1876. Ye Fei, He Chuan, Zhu Hehua, et al. Longitudinal equivalent rigidity analysis of shield tunnel considering transverse characteristics[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12):1870-1876. (in Chinese)
[16] Wu Huaina, Shen Shuilong, Liao Shaoming, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50(8):317-323.
[17] Liang Rongzhu, Xia Tangdai, Huang Maosong, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81(1):167-187.
[18] 蒋建群, 卢慈荣, 沈林冲. 盾构法隧道纵向非线性地震响应特性研究[J]. 水力发电学报, 2005, 24(2):10-15. Jiang Jianqun, Lu Cirong, Shen Linchong. Research on longitudinal nonlinear seismic response of shield tunnel[J]. Journal of Hydroelectric Engineering, 2005, 24(2):10-15. (in Chinese)
[19] 李晓军, 黄伯麒, 朱合华, 等. 基于柔度法梁模型的盾构隧道衬砌结构纵向变形计算方法[J]. 工程力学, 2016, 33(4):157-165, 187. Li Xiaojun, Huang Boqi, Zhu Hehua, et al. Computation method for longitudinal deformation of shield tunnel lining structure based on flexibility beam model[J]. Engineering Mechanics, 206, 33(4):157-165, 187. (in Chinese)
[20] 王新敏, 李义强, 许宏伟. ANSYS结构分析单元与应用[M]. 北京:人民交通出版社, 2011:375-392. Wang Xinmin, Li Yiqiang, Xu Hongwei. ANSYS elements application of structural analysis[M]. Beijing:China Communications Press, 2011:375-392. (in Chinese)
[1] 张永平, 徐荣桥. 考虑层间滑移的多层组合梁挠度计算[J]. 工程力学, 2018, 35(S1): 22-26.
[2] 王园园, 段树金, 牛润明. 钢-混凝土组合与叠合双重作用梁负弯矩区刚度和叠合面滑移研究[J]. 工程力学, 2018, 35(S1): 265-269.
[3] 崔瑶, 李浩, 刘浩, 王晶秋, 唐贞云. 外露式钢柱脚恢复力特性分析[J]. 工程力学, 2018, 35(7): 232-242.
[4] 刘喆, 何平, 张安琪, 陈铮. 盾构隧道施工过程及支护方式对高速铁路高架桥群桩基础影响分析[J]. 工程力学, 2016, 33(增刊): 219-226.
[5] 李晓军, 黄伯麒, 朱合华, 洪弼宸. 基于柔度法梁模型的盾构隧道衬砌结构纵向变形计算方法[J]. 工程力学, 2016, 33(4): 157-165,187.
[6] 徐国文, 王士民, 汪冬兵. 基于接头抗弯刚度非线性的壳-弹簧-接触-地层模型的建立[J]. 工程力学, 2016, 33(12): 158-166.
[7] 晏启祥,张煜,王春艳,耿萍. 剪切波作用下盾构隧道地震效应的拟静力分析方法研究[J]. 工程力学, 2015, 32(5): 184-191.
[8] 刘四进, 封坤, 何川, 何政树. 大断面盾构隧道管片接头抗弯力学模型研究[J]. 工程力学, 2015, 32(12): 215-224.
[9] 吴庆雄, 罗秋芳, 王文平, 陈宝春. 振动松弛对斜索参数振动的影响分析[J]. 工程力学, 2014, 31(增刊): 182-188,200.
[10] 韦凯, 翟婉明, 肖军华. 软土地铁盾构隧道垂向随机振动分析模型[J]. 工程力学, 2014, 31(6): 117-123.
[11] 李德月, 潘蓉, 孙运轮, 李易, 闫维明. 大跨半钢板混凝土简支梁承载力性能试验研究[J]. 工程力学, 2014, 31(5): 64-70.
[12] 张建刚,何川. 盾构隧道衬砌整环力学机理模型[J]. 工程力学, 2013, 30(7): 136-141,146.
[13] 封坤, 何川, 邹育麟. 大断面越江盾构隧道管片拼装方式对结构内力的影响效应研究[J]. 工程力学, 2012, 29(6): 114-124.
[14] 晏致涛, 杨振华, 李正良. 抗弯刚度对输电线微风振动影响分析[J]. 工程力学, 2012, 29(6): 247-252.
[15] 边学成,宋广,陈云敏. Pasternak 地基中土工格室加筋体的受力变形分析[J]. 工程力学, 2012, 29(5): 147-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖映雄;周志阳;舒 适. 几类典型网格下三维弹性问题的代数多层网格法[J]. 工程力学, 2011, 28(6): 11 -018 .
[2] 鞠 伟;岑 松;傅向荣;龙驭球. 基于哈密顿解法的厚板边界效应典型算例分析[J]. 工程力学, 2008, 25(2): 0 -008 .
[3] 刘春梅, 肖映雄, 舒适, 钟柳强. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学, 2012, 29(9): 60 -67,91 .
[4] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[5] 姜忻良 张崇祥 姜南 罗兰芳. 设备-结构-土体系振动台实时子结构试验方法探讨[J]. 工程力学, 0, (): 0 .
[6] 袁全, 袁驷, 李易, 闫维明, 邢沁妍. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018, 35(8): 9 -13 .
[7] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107 -112 .
[8] 郑欣, 刘宇斌, 陈璞, 沈峰, 张圣君, 傅向荣. 基于弯扭耦合理论的颤振频率计算方法[J]. 工程力学, 2018, 35(S1): 1 -5,12 .
[9] 贾宏宇, 杜修力, 李兰平, 黄胜前, 郑史雄. 地震作用下梁体碰撞间隙宽度的概率分析方法[J]. 工程力学, 2018, 35(8): 39 -45 .
[10] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日