工程力学 ›› 2018, Vol. 35 ›› Issue (11): 68-78.doi: 10.6052/j.issn.1000-4750.2017.08.0608

• 土木工程学科 • 上一篇    下一篇

基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析

王磊, 班慧勇, 石永久, 王元清   

  1. 土木工程安全与耐久教育部重点试验室, 清华大学土木工程系, 北京, 100084s
  • 收稿日期:2017-08-07 修回日期:2018-01-12 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 班慧勇(1985-),男,内蒙古人,特别研究员,博士,从事结构工程研究(E-mail:banhy@tsinghua.edu.cn). E-mail:banhy@tsinghua.edu.cn
  • 作者简介:王磊(1987-),男,辽宁人,博士生,主要结构工程研究(E-mail:wanglei2006010@163.com);石永久(1962-),男,黑龙江人,教授,博士,博导,从事高层钢结构抗震研究(E-mail:shiyj@mail.tsinghua.edu.cn);王元清(1963-),男,安徽人,教授,博士,博导,从事钢结构断裂研究(E-mail:wang-yq@mail.tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578313)

FINITE ELEMENT ANALYSIS ON ASEISMIC BEHAVIOR OF HIGH-STRENGTH STEEL BEAM-TO-COLUMN CONNECTIONS IN STEEL FRAMES BASED ON MICROMECHANICS OF FRACTURE

WANG Lei, BAN Hui-yong, SHI Yong-jiu, WANG Yuan-qing   

  1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing, 100084, China
  • Received:2017-08-07 Revised:2018-01-12 Online:2018-11-07 Published:2018-11-07

摘要: 梁柱节点在地震作用下的抗断性能直接影响钢框架结构体系的抗震性能,关系到能否实现强节点、弱构件的设计原则。为深入研究高强钢框架梁柱节点在低周往复荷载下的抗断裂性能,该文采用考虑累积损伤作用的循环微孔扩张模型CVGM模拟开裂,并通过有限元软件ABAQUS建立梁柱节点的精细化三维有限元模型,利用用户子程序USDFLD将CVGM嵌入节点的有限元模型中。利用该模型模拟计算了21个不同构造形式、不同钢材强度等级的梁柱节点试件的抗震性能,得到的节点荷载—变形滞回曲线、承载力、断裂循环次数等均与试验实测结果吻合良好,表明CVGM对预测低周循环荷载下梁柱节点超低周疲劳断裂具有较好的准确性,且适用于不同的循环荷载工况和钢材强度等级。该文的研究工作为高强钢框架梁柱节点的抗震性能评估和防断设计提供了计算手段和基础条件。

关键词: 梁柱节点, 高强钢, 有限元分析, 断裂, 抗震, CVGM

Abstract: The fracture resistance of beam-to-column connections may affect the overall aseismic performance of steel frames directly, and it is essential for ensuring the design principle in terms of strong connections and weak members. In order to study the fracture behavior of high-strength (HS) steel frame beam-to-column connections subjected to cyclic loading, this paper uses cyclic void growth model (CVGM) to simulate the fracture of the connections. Through the finite element (FE) software ABAQUS, a 3D FE model of beam-to-column connection is developed, with the CVGM being embedded by using the USDFLD program. 21 specimens fabricated from different grades of steel with various configuration details are analyzed through the model and compared with the test results. It is indicated that load-deformation hysteresis curves, bearing capacities, and number of cycles before fracture commencing are in a good agreement with the tests. The results show that:the CVGM has good adequacy for simulating the extremely low-cycle fatigue fracture of the beam-to-column connections under cyclic loading, and it is suitable for different cyclic loading conditions and steel grades. A basic methodology and a valuable reference will be thusly provided for aseismic performance evaluation and anti-fracture design of the HS steel frame beam-to-column connections.

Key words: beam-to-column connections, high-strength steel, finite element analysis, fracture, seismic, CVGM

中图分类号: 

  • TU391
[1] 李国强, 孙飞飞, 沈祖炎. 强震下钢框架梁柱焊接连接的断裂行为[J]. 建筑结构学报, 1998, 19(4):19-28. Li Guoqiang, Sun Feifei, Shen Zuyan. Fracture behavior of welded beam-to-column connect ions of steel moment frames under severe earthquakes[J]. Journal of Building Structure, 1998,19(4):19-28. (in Chinese)
[2] 王元清, 周晖, 石永久, 等. 基于断裂力学的钢框架梁柱节点抗震性能分析[J]. 工程力学, 2012, 29(4):104-112. Wang Yuanqing, Zhou Hui, Shi Yongjiu, et al. Seismic behavior analyses of welded beam-to-column connections based on fracture mechanics[J]. Engineering Mechanics, 2012, 29(4):104-112. (in Chinese)
[3] 胡方鑫, 施刚, 石永久. 基于断裂力学的高强度钢材梁柱节点受力性能分析.[J]. 工程力学, 2015, 32(4):41-46. Hu Fangxin, Shi Gang, Shi Yongjiu. Fracture behavior of beam-column connections using high strength steel based on fracture mechanics[J]. Engineering Mechanics, 2015, 32(4):41-46. (in Chinese)
[4] 廖芳芳, 王伟, 陈以一. 往复荷载下钢结构节点的超低周疲劳断裂预测[J]. 同济大学学报(自然科学版), 2014, 42(4):539-546. Liao Fangfang, Wang Wei, Chen Yiyi. Extremely low cycle fatigue fracture prediction of steel connections under cyclic loading[J]. Journal of Tongji (Natural Science), 2014, 42(4):539-546. (in Chinese)
[5] Kuroda M. Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model[J]. International Journal of Fatigue, 2002, 24(6):699-703.
[6] Tateishi K, Hanji T, Minami K. A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29(5):887-896.
[7] Anderson T L. Fracture mechanics:fundamentals and applications[M]. Third Edition, Boca Raton, Florida:CRC Press, 2005:12-13.
[8] 廖芳芳, 王伟, 李文超, 等. 钢结构节点断裂的研究现状[J]. 建筑科学与工程学报, 2016, 33(1):67-75. Liao Fangfang, Wang Wei, Li Wenchao, et al. Review on research status of connection fracture of steel structures[J]. Journal of Architecture and Civil Engineering, 2016, 33(1):67-75. (in Chinese)
[9] Hancock J W, Mackenzie A C. On the mechanisms of ductile failure in high-strength steel tested to multi-axial atress-states[J]. Journal of the Mechanics and Physics of Solids, 1976, 24(2/3):147-160.
[10] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217.
[11] Kanvinde A M. Micromechanical simulation of earthquake-induced fracture in steel structures[D]. Stanford:Stanford University, 2004.
[12] Kanvinde A M, Deierlein G G. Micromechanical simulation of earthquake-induced fracture in steel structures[R]. the John A. Blume Earthquake Engineering Center, Stanford University, CA, 2004:2113-2114.
[13] Ana M. Girao Coelho, Frans S.K. Bijlaard, Henk Kolstein. Experimental behaviour of high-strength steel web shear panels[J]. Engineering Structures, 2009, 31(2):1543-1555.
[14] Xuchuan Lin, Taichiro Okazaki, Masayoshi Nakashima. Bolted beam-to-column connections for built-up columns constructed of H-SA700 steel[J]. Journal of Constructional Steel Research, 2014, 101:469-481.
[15] Sandra Jordão, L. Simões da Silva, Rui Simões. Design formulation analysis for high strength steel welded beam-to-column joints[J]. Engineering Structures, 2014, 70:63-81.
[16] 孙飞飞, 孙密, 李国强, 等. Q690高强钢端板连接梁柱节点抗震性能试验研究[J]. 建筑结构学报, 2014, 35(4):116-124. Sun Feifei, Sun Mi, Li Guoqiang, et al. Experimental study on seismic behavior of Q690 high-strength steel beam-to-column end-plate connections[J]. Journal of Building Structure, 2014, 35(4):116-124. (in Chinese)
[17] 周晖, 王元清, 石永久, 等. 基于微观机理的梁柱节点焊接细节断裂分析[J]. 工程力学, 2015, 32(5):37-50. Zhou Hui, Wang Yuanqing, Shi Yongjiu, Xiong Jun. Fracture analyses of welded details in beam-to-column connections using micromechanics-based models[J]. Engineering Mechanics, 2015, 32(5):37-50. (in Chinese)
[18] 黄学伟, 张旭, 苗同臣. 建筑结构钢超低周疲劳断裂破坏的损伤预测模型[J]. 工程力学, 2017, 34(6):101-108. Huang Xuewei, Zhang Xu, Miao Tongchen. A damage prediction model for ultra low cycle fatigue failure of building structural steel[J]. Engineering Mechanics, 2017, 34(6):101-108. (in Chinese)
[19] Huang Xuewei, Zhao Jun. A cumulative damage model for extremely low cycle fatigue cracking in steel structure[J]. Structural Engineering and Mechanics, 2017, 62(2):225-236.
[20] Bai Yongtao, Guan Shaoyu, Florez-Lopez Julio. Development of a damage model for assessing fracture failure of steel beam-to-column connections subjected to extremely low-cycle fatigue[J]. Engineering Failure Analysis, 2017, 82(5):823-834.
[21] Anderson T L. Fracture mechanics:Fundamentals and applications[M]. 3rd ed. Boca Raton, Florida:Chemical Rubber Company Press, 2005.
[22] 卢璐. 基于微观机制的钢材韧性断裂试验与分析[D]. 南京:东南大学, 2015. Lu Lu. Experimental and theoretical research on ductile fracture of structural steels based on micromechanical mechanisms[D]. Nanjing:Southeast University, 2015. (in Chinese)
[23] Zhou Hui, Wang Yuanqing, Shi Yongjiu, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013(48):90-100.
[24] 刘希月, 王元清, 石永久. 基于微观机理的高强度钢材及其焊缝断裂预测模型研究[J]. 建筑结构学报, 2016, 37(6):228-235. Liu Xiyue, Wang Yuanqing, Shi Yongjiu. Micromechanical fracture prediction model of high strength steel and its weld[J]. Journal of Building Structures, 2016, 37(6):228-235.
[25] 郭长岚. 基于微观损伤模型的Q235B圆钢管断裂行为研究[D]. 北京:北京交通大学, 2015. Guo Changlan. Fracture research of Q235B circular steel based on micromechanical damage models[D]. Beijing:Beijing Jiaotong University, 2015. (in Chinese)
[26] 刘希月. 基于微观机理的高强钢结构材料与节点的断裂性能研究[D]. 北京:清华大学, 2015. Liu Xiyue. Investigations on fracture behaviours of high strength steel materials and connections based on micromechanical models[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[27] 徐明, 陆剑锋, 李红兵, 等. 考虑节点域加强的Q690GJ高强钢梁柱节点抗震性能试验研究[J]. 钢结构, 2016, 31(3):6-13. Xu ming, Lu Jianfeng, Li Hongbing, et al. Experimentalresearch on the aseismic behavior of Q690GJ high-strength steel beam-to-column connections considering reinforced panel zone[J]. Steel Structure, 2016, 31(3):6-13. (in Chinese)
[28] Shi Y J, Wang M, Wang Y Q. Analysis on shear behavior of high-strength bolts connection[J]. International Journal of Steel Structures, 2011, 11(2):203-213.
[29] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2):50-59. Shi Gang, Zhu Xi. Study on constitutive model of high-strength structural steel under monotonic loading[J]. Engineering Mechanics, 2013, 34(2):50-59. (in Chinese)
[30] 张艳霞. 钢框架梁柱抗震节点试验研究和有限元分析实例[M]. 北京:中国建筑工业出版社, 2015. Zhang Yanxia. The experiment and finite element instance of anti-seismic beam-column connection of steel frame[M]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[1] 贾明明, 周洲, 吕大刚, 杨宁. 摇摆桁架-BRB-钢框架体系地震失效模式与抗震性能分析[J]. 工程力学, 2018, 35(S1): 73-79.
[2] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[3] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[4] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[5] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[6] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[7] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[8] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[9] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[10] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[11] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[12] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[13] 王永亮, 鞠杨, 陈佳亮, 杨永明, Li C F. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17-25,36.
[14] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[15] 支旭东, 张英楠, 范峰, 沈世钊. 单层球面网壳的多重地震效应研究[J]. 工程力学, 2018, 35(9): 107-113,125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 方有珍,马 吉,陆承铎,曲延全,申 林. 新型卷边钢板组合截面PEC柱(强轴)滞回性能试验研究[J]. 工程力学, 2013, 30(3): 181 -190 .
[2] 袁全, 袁驷, 李易, 闫维明, 邢沁妍. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018, 35(8): 9 -13 .
[3] 赵威, 卜令泽, 王伟. 稀疏偏最小二乘回归-多项式混沌展开代理模型方法[J]. 工程力学, 2018, 35(9): 44 -53 .
[4] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39 -46 .
[5] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104 -116 .
[6] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187 -193 .
[7] 王涛, 柳占立, 高岳, 庄茁. 基于给定参数的水力裂缝与天然裂缝相互作用结果的预测准则[J]. 工程力学, 2018, 35(11): 216 -222 .
[8] 齐欣, 许浒, 余志祥, 赵雷, 孟庆成. 柔性拦截结构中减压环动态力学性能试验研究[J]. 工程力学, 2018, 35(9): 188 -196 .
[9] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟 . 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 0, (): 0 .
[10] 庞瑞, 许清风, 梁书亭, 朱筱俊. 全装配式RC楼盖板缝节点拉剪复合受力性能试验研究[J]. 工程力学, 2018, 35(10): 112 -123 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日