工程力学 ›› 2018, Vol. 35 ›› Issue (11): 206-215.doi: 10.6052/j.issn.1000-4750.2017.08.0607

• 机械工程学科 • 上一篇    下一篇

TA17合金薄片材料毫小试样疲劳性能研究

尹涛, 蔡力勋, 陈辉, 姚迪   

  1. 西南交通大学力学与工程学院应用力学与结构安全四川省重点实验室, 四川, 成都 610031
  • 收稿日期:2017-08-06 修回日期:2018-03-29 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 尹涛(1990-),男,陕西人,硕士生,从事材料的疲劳与断裂力学测试研究(E-mail:heisezhanshi@126.com). E-mail:heisezhanshi@126.com
  • 作者简介:蔡力勋(1959-),男,四川人,教授,硕士,博导,主要从事材料本构关系、疲劳与断裂力学研究(E-mail:lix_cai@263.net);陈辉(1990-),男,湖南人,博士生,主要从事材料本征参数获取方法研究(E-mail:chen_hui5352@163.com);姚迪(1990-),男,山东人,博士生,主要从事材料全程单轴本构关系研究(E-mail:di_yaodic@163.com).
  • 基金资助:
    基于延性材料RVE破断行为的结构完整性评价基础问题研究(11472228)

STUDY ON FATIGUE PROPERTIES OF TA17 ALLOY SLICE BY MILLIMETER-SIZED SPECIMEN

YIN Tao, CAI Li-xun, CHEN Hui, YAO Di   

  1. Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2017-08-06 Revised:2018-03-29 Online:2018-11-07 Published:2018-11-07

摘要: 关键工程结构、小尺寸零部件和焊接区的疲劳寿命评估中往往无法采用传统大试样进行疲劳试验,因此本文提出了一种采用毫米级别薄片试样获取材料循环本构关系和低周疲劳寿命的新方法。在Care原位试验机上完成毫米级别薄片漏斗试样的加载工装和低周疲劳试验的基础上,通过变幅对称循环试验和等辐循环试验分别实现了材料循环本构关系和低周疲劳性能的获取。该文提出了一种对不同幂律材料和不同几何尺寸构型均具有良好普适性的材料循环本构关系预测模型,并通过有限元实现了模型准确性的正反向预测验证。将循环本构关系用于有限元计算中,给出了薄片漏斗试样漏斗两侧名义应力、名义应变和漏斗根部真实应力、真实应变的转换方程,进而预测材料的低周疲劳寿命。该文完成了TA17合金等直圆棒试样和1.2 mm厚度薄片漏斗试样的对称变幅循环试验和多级等辐循环试验。由模型预测获得的TA17合金循环本构关系与等直圆棒试样的试验结果比较表明:两种曲线的弹性段和0.009 mm/mm~0.011 mm/mm应变段吻合良好,在弹塑性过渡段(0.004 mm/mm~0.009 mm/mm)模型预测结果最大相对误差小于9%。根据两组应力和应变转换方程获得的漏斗试样材料代表性体积单元疲劳寿命和Manson-Coffin寿命预测模型与等直圆棒试样试验结果均吻合良好。

关键词: TA17合金, 薄片半圆弧漏斗试样, 低周疲劳试验, 应变能分离函数, 循环本构关系预测模型, 应力-应变转换方程, 疲劳寿命

Abstract: It is difficult to obtain the fatigue properties of key engineering structures, small sized parts and welding areas by using low cycle fatigue testing specimens which are given by current standards. In this paper, a new method is proposed to obtain the cyclic constitutive relationship and low cycle fatigue life of materials by using a millimeter-sized specimen. The low cycle fatigue test of TA17 alloy slice is carried out by designing semicircular notched slice specimens, loading fixture and testing scheme. Based on the assumed strain energy separation function, a universal prediction model of cyclic constitutive relationships is proposed. The forward and backward prediction of finite element simulations show that the new model has universal validity for different power-law materials and different dimensions of notched slice specimens. Symmetric strain-controlled variable-amplitude low cycle fatigue tests and multi-level low cycle fatigue tests of TA17 alloy straight round bar specimens and 1.2 mm thickness notched slice specimens are completed. After using the cyclic constitutive relationship of TA17 alloy predicted by the new model to compare with straight round bar specimens, the results show that they are in a good agreement with elastic segments and the large strain segments (0.009 mm/mm~0.011 mm/mm), and that their maximum relative predicting error is less than 9% in elastic-plastic transition segments (0.004 mm/mm~0.009 mm/mm). Adopting the finite element method based on the cyclic constitutive relationships obtained by the new model and straight round bar specimens, two sets of transforming equations are conducted to convent the testing strain amplitude and average stress amplitude of notched slice specimens to axial strain and stress amplitude at the semicircular notched root. Finally, the notched slice specimens' fatigue-life curves of material representative volume element and Manson-Coffin life prediction model via two sets of transforming equations are verified to be identical to the experimental results from straight round bar specimens.

Key words: TA17 alloy, semicircular notched slice specimen, low cycle fatigue test, strain energy separation function, universal prediction model of cyclic constitutive relationship, transforming equations of strain amplitude and stress amplitude, fatigue life

中图分类号: 

  • TG146.2+3
[1] Manson S S. Fatigue:A complex subject-some simple approximations[J]. Experimental Mechanics, 1965, 5(4):193-226.
[2] GB/T 15248-2008, 金属材料轴向等幅低循环疲劳试验方法[S]. 北京:中国标准出版社, 2008. GB/T 15248-2008, The test method for axial loading constant-amplitude low-cycle fatigue of metallic materials.[S]. Beijing:Standards Press of China, 2008. (in Chinese)
[3] ISO12106-2003, Metallic materials-fatigue testing-axialtrain-controlled method[S]. Genera:International Organization for Standardization, 2003.
[4] 熊茹, 刘桂良, 邓凯. 反应堆结构材料疲劳性能研究的质量控制要素分析及应用[J]. 核动力运行研究, 2013, 26(1):208-213. Xiong Ru, Liu Guiliang, Deng Kai. Analysis and application of quality control factors for research on fatigue property of reactor structure materials[J]. Research of Nuclear Power Operation, 2013, 26(1):208-213. (in Chinese)
[5] Villarraga M L, Kurtz S M, Herr M P, et al. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing[J]. Journal of Biomedical Materials Research Part A, 2003, 66A(2):298-309.
[6] Guiberteau F, Padture N P, Cai H, et al. Indentation fatigue[J]. Philosophical Magazine A, 1993, 68(68):1003-1016.
[7] Jamison R D, Schulte K, Reifsnider K L, et al. Characterization and analysis of damage of damage mechanisms in tension-tension fatigue of graphite epoxy laminates[J]. ASTM International, 1984:21-55.
[8] Gean A, Kucza J C, Ehrstrom J C, et al. Static and fatigue behavior of spot-welded 5182-0 aluminum alloys sheet[J]. Welding Journal, 1999, 78(3):80S-86S.
[9] Fredriksson K, Melander A, Hedman M. Influence of prestraining and ageing on fatigue properties of high-strength sheet steels[J]. International Journal of Fatigue, 1988, 10(3):139-151.
[10] Wisner S B, Reynolds M B, Adamson R B. Fatigue behavior of irradiated and unirradiated zircaloy and zirconium[J]. American Society for Testing and Materials, 1994:499-520.
[11] 李丹柯, 蔡力勋. 锆合金薄片材料高温低周疲劳试验技术[J]. 试验技术与试验机, 2007, 4(1):006. Li Danke, Cai Lixun. On low cycle fatigue testing technique at elevated temperature based on slice specimen[J]. Test Technology and Testing Machine, 2007, 4(1):006. (in Chinese)
[12] 蔡力勋, 叶裕明, 高庆, 等. Zr-4合金薄片材料的应变疲劳与寿命估算[J]. 西安交通大学学报, 2004, 38(1):97-104. Cai Lixun, Ye Yuming, Gao Qing, et al. Strain fatigue and life estimate of Zr-4 alloy slice[J]. Journal of Xi'an Jiaotong University, 2004, 38(1):97-104. (in Chinese)
[13] 叶裕明, 蔡力勋, 李聪. Zr-4合金小试样高温疲劳行为研究[J]. 核动力工程, 2006, 27(3):37-42. Ye Yuming, Cai Lixun, Li Cong. LCF behavior of Zr-4 alloy at elevated temperature[J]. Nuclear Power Engineering, 2006, 27(3):37-42. (in Chinese)
[14] 蔡力勋, 范宣华, 李聪. 高温对Zr-4合金低循环行为的影响[J]. 航空材料学报, 2004, 24(5):1-6. Cai Lixun, Fan Xuanhua, Li Cong. Effects of elevated temperatures on the low cycle behavior of Zr-4 alloy[J]. Journal of Aeronautical Materials, 2004, 24(5):1-6. (in Chinese)
[15] Cai Lixun, Ye Yuming, Li Cong. Low-cycle fatigue behavior of small slice specimens of Zr-4 alloy at elevated temperature[J]. Key Engineering Materials, 2006, 324/325:1241-1244.
[16] 黄学伟, 蔡力勋. 薄片漏斗试样的应变等效换算与Zr-4合金疲劳寿命估算[J]. 实验室研究与探索, 2007, 26(11):180-184. Huang Xuewei, Cai Lixun. On strain equivalent method for thin bulge-like specimen and low cycle fatigue life estimation model of Zr-4 alloy[J]. Research and Exploration in Laboratory, 2007, 26(11):180-184. (in Chinese)
[17] 黄学伟, 蔡力勋, 梁波. 基于单轴缺口试样的一种低周疲劳测试方法与应用[J]. 中国测试, 2009, 35(5):7-10. Huang Xuewei, Cai Lixun, Liang Bo. Low cycle fatigue test method based on uniaxial test strain of notch specimens and its application[J]. China Measurement & Test, 2009, 35(5):7-10. (in Chinese)
[18] 黄学伟, 蔡力勋, 包陈, 等. Zr-Sn-Nb薄片合金高温低周疲劳行为[J]. 原子能科学技术. 2010, 44(1):60-64. Huang Xuewei, Cai Lixun, Bao Chen, et al. Low cycle fatigue behavior of Zr-Sn-Nb slice alloy at elevated temperature[J]. Atomic Energy Science and Technology. 2010, 44(1):60-64. (in Chinese)
[19] 黄学伟. 新结构材料力学行为的获取方法[D]. 成都:西南交通大学, 2010. Huang Xuewei. Experiment and simulation methods for investigate mechanicals behavior of new structural materials[D]. Chengdu:Southwest Jiao Tong University, 2010. (in Chinese)
[20] 贾琦. 异型试样疲劳与断裂性能测试方法研究与应用[D]. 成都:西南交通大学, 2011. Jia Qi. Research and application of fatigue and fracture properties test method of non-conventional samples[D]. Chengdu:Southwest Jiao Tong University, 2011. (in Chinese)
[21] 贾琦, 蔡力勋, 包陈. 考虑循环塑性修正的薄片材料低周疲劳试验方法[J]. 工程力学, 2014, 31(1):218-223. Jia Qi, Cai Lixun, Bao Chen. A testing method to investigate low cycle fatigue behavior of slice materials based on cycling plasticity correction[J]. Engineering Mechanics, 2014, 31(1):218-223. (in Chinese)
[22] Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1):13-31.
[23] Chen H, Cai L X. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J]. Acta Materialia, 2016, 121(1):181-189.
[24] 赵少汴. 局部应力应变法及其设计数据[J]. 机械设计, 2000, 17(2):1-3. Zhao Shaobian. Local Stress-strain method and design data[J]. Journal of Machine Design, 2000, 17(2):1-3. (in Chinese)
[1] 赵东拂, 高海静, 刘禹辰, 刘慧璇, 贾朋贺. 高温后高强混凝土受压疲劳性能研究[J]. 工程力学, 2018, 35(8): 201-207,229.
[2] 郁大照, 陈跃良, 王允良. 含多处损伤宽板螺接搭接件疲劳寿命研究[J]. 工程力学, 2017, 34(6): 217-225.
[3] 李岩, 李旭东, 夏天翔, 岳宁, 宫綦, 文放. 采用应力场强法对某型航空发动机压气机轮盘的疲劳寿命评估及试验研究[J]. 工程力学, 2016, 33(7): 220-226.
[4] 张耀庭, 赵璧归, 李瑞鸽, 杜晓菊. HRB400钢筋单调拉伸及低周疲劳性能试验研究[J]. 工程力学, 2016, 33(4): 121-129.
[5] 陶佳跃, 周亚东, 张培伟, 费庆国. 钛合金高温疲劳性能的试验研究[J]. 工程力学, 2016, 33(4): 250-256.
[6] 方吉, 李季涛, 王悦东, 兆文忠. 基于随机振动理论的焊接结构疲劳寿命概率预测方法研究[J]. 工程力学, 2016, 33(3): 24-30.
[7] 陈跃良, 雷园玲, 张勇, 卞贵学, 刘旭. T300/BPM316复合材料层合板的载荷放大系数确定[J]. 工程力学, 2016, 33(1): 195-200.
[8] 王峰, 方宗德, 李声晋, 蒋进科. 基于齿根动应力的船用人字齿轮疲劳分析与优化[J]. 工程力学, 2015, 32(7): 184-189.
[9] 欧阳煜,卞海涛,杨峥. FRP布加固具有中心裂纹板条的断裂疲劳性能[J]. 工程力学, 2015, 32(3): 158-166.
[10] 秦飞,沈莹,陈思. 硅通孔转接板封装结构多尺度问题的有限元模型[J]. 工程力学, 2015, 32(10): 191-197.
[11] 邓扬,李爱群,丁幼亮. 钢箱梁桥海量应变监测数据分析与 疲劳评估方法研究[J]. 工程力学, 2014, 31(7): 69-77.
[12] 李涛, 陈泉, 王春林, 吴京. 屈曲约束支撑端部塑性扭转屈曲试验研究[J]. 工程力学, 2014, 31(3): 168-172.
[13] 金丹, 田大将, 王巍, 林伟. 非比例载荷下缺口件疲劳寿命预测[J]. 工程力学, 2014, 31(10): 212-215,221.
[14] 童乐为,顾敏,朱俊,王柯. 基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测[J]. 工程力学, 2013, 30(4): 331-336.
[15] 邢保英,何晓聪,唐勇,郑俊超. 铆钉分布形式对自冲铆接头力学性能的影响[J]. 工程力学, 2013, 30(12): 280-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[2] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[3] 郭薇薇;夏禾;徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006, 23(2): 103 -110 .
[4] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
[5] 贺瑞;秦权. 产生时程分析用的高质量地面运动时程的新方法[J]. 工程力学, 2006, 23(8): 12 -18 .
[6] 顾明;叶丰. 高层建筑风致响应的简化分析方法[J]. 工程力学, 2006, 23(8): 57 -61,4 .
[7] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[8] 许福友;陈艾荣. 平板颤振导数的参数弹性研究[J]. 工程力学, 2006, 23(7): 60 -64 .
[9] 曹树谦;;陈予恕;. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68 -079 .
[10] 陈伟球;严 蔚. 混凝土结构服役智能化的若干研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ): 91 -105 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日