工程力学 ›› 2018, Vol. 35 ›› Issue (11): 190-196.doi: 10.6052/j.issn.1000-4750.2017.08.0603

• 机械工程学科 • 上一篇    下一篇

高速铁路轮轨作用力的全息辨识模型

孙善超1, 刘金朝1, 王卫东1, 刘小明2, 魏悦广3   

  1. 1. 中国铁道科学研究院, 北京 100081;
    2. 中国科学院力学研究所, 北京 100190;
    3. 北京大学工学院, 北京 100871
  • 收稿日期:2017-08-23 修回日期:2017-12-13 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 孙善超(1979-),男,山东济宁人,副研究员,博士,从事动态载荷辨识研究(Email:scschina@163.com). E-mail:scschina@163.com
  • 作者简介:刘金朝(1971-),男,湖南常宁人,研究员,博士,主要从事数据挖掘研究(E-mail:liujinzhao@sina.com);王卫东(1963-),男,江苏徐州人,研究员,博士,主要从事检测技术研究(E-mail:drwang@rails.cn);刘小明(1982-),男,江苏丹阳人,副研究员,博士,主要从事固体力学研究(E-mail:xiaomingliu@lnm.imech.ac.cn);魏悦广(1960-),男,陕西渭南人,教授,博士,院士,主要从事固体力学研究(E-mail:weiyg@pku.edu.cn).
  • 基金资助:
    中国铁路总公司重点课题项目(2017G011-B,2017G011-E);国家自然科学基金项目(11432014,11572329)

HOLOGRAPHIC IDENTIFICATION MODEL OF WHEEL & RAIL CONTACT FORCE FOR HIHG-SPEED RAILWAY

SUN Shan-chao1, LIU Jin-zhao1, WANG Wei-dong1, LIU Xiao-ming2, WEI Yue-guang3   

  1. 1. China Academy of Railway Science, Beijing 100081, China;
    2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. College of Engineering, Peking University, Beijing 100871, China
  • Received:2017-08-23 Revised:2017-12-13 Online:2018-11-07 Published:2018-11-07

摘要: 结合最优控制理论、卡尔曼滤波方法以及轮轨蠕滑理论,该文建立了轮轨作用力的全息辨识模型,并将模型的反演结果与动力学解答和实验测量结果作对比,验证了模型的适用性。首先,根据车辆系统的状态空间方程,设计一个最优化加速度状态跟踪器,将轮轨作用力辨识问题转换成为最优控制策略的设计问题;然后,利用SVD (singular value decomposition奇异值分解)分解技术对最优控制问题进行逆向求解,完成系统的动态载荷预测值的辨识;进一步结合卡尔曼滤波技术及加速度测试值,对辨识动载荷预测值进行正向修正,得到左、右轮轨垂向力及轮轴横向力;最后,结合轮轨蠕滑理论,将左、右轮轨横向力转换为到左、右轮轨垂向力及轮对横移量的函数,消减不适定性,从而能够分别辨识出轮轨左、右的横向力。辨识模型得到的结果与动力学解答的相关系数分别达到0.65、0.8以上,与实测载荷的相关系数分别达到0.51、0.69以上。

关键词: 最优控制, SVD分解, 卡尔曼滤波, 轮轨蠕滑理论, 全息轮轨力辨识模型

Abstract: Combined with optimal control theory, wheel rail creep theory and Kalman filtering method, a holographic model is established for the identification of wheel & rail contact forces. The identification results were compared with numerical simulation and inspection data. Firstly, the identification problem was converted into the design issues using an optimal control strategy, an optimal acceleration state tracker was developed by using the state space equation of a vehicle system. Secondly, the design issues were inversely solved using SVD technique, and the evolution history of contact forces were obtained. The predicted contact forces were positively updated using Kalman fliting method. Finally, the relation between contact forces and wheelset displacements were updated by using the wheel-rail creep theory, the ill-posedness problem was thusly solved, and independent left/right lateral forces can be obtained. The identification results were compared with the numerical simulation and the experimental finding, and it showed that the correlation coefficient of identification lateral/vertical forces and simulation forces were 0.69/0.8, and that the correlation coefficient of identification lateral/vertical forces and verification forces were 0.51/0.69.

Key words: optimal control theory, SVD decomposition, Kalman method, wheel/rail creep theory, holographic identification model

中图分类号: 

  • U211.5
[1] Bruner M, Catena M, Cortis D, et al. Estimation of the wheel-rail lateral contact force through the analysis of the rail web bending strains[J]. Measurement, 2017, 99(3):23-35.
[2] Ji Y, Ren L, Zhou J. Computation of wheel-rail contact force for non-mapping wheel-rail profile of Translohr tram[J]. Vehicle System Dynamics, 2017, 55(1):1-25.
[3] 王立岩, 李东升, 李宏男. 基于HHT的非线性振动系统参数识别研究[J]. 工程力学, 2017, 34(1):28-32. Wang Liyan, Li Dongsheng, Li Hongnan. Parameter identification of nonlinear vibration systems based on the hilbert-huang tramsform[J]. Engineering Mechanics, 2017, 34(1):28-32. (in Chinese)
[4] 梅竹, 吴斌, 杨格. 钢筋混凝土结构材料本构模型参数的在线识别[J]. 工程力学, 2016, 33(7):108-115. Mei Zhu, Wu Bin, Yang Ge. Online parameter identification of concrete constitutive model.[J]. Engineering Mechanics. 2016, 33(7):108-115. (in Chinese)
[5] 高伟, 于开平, 盖晓男. 一种基于变尺度积分滑动平均的载荷识别方法[J]. 工程力学, 2016, 33(7):39-47. Gao Wei, Yu Kaiping, Gai Xiaonan. A moving average method for load identification based on variable scale integral[J]. Engineering Mechanics, 2016, 33(7):39-47. (in Chinese)
[6] 胡寅寅, 率志君, 李玩幽, 等. 设备载荷识别与激励源特性的研究现状[J]. 噪声与振动控制, 2011, 31(4):1-5. Hu Yinyin, Shuai Zhijun, Li Wanyou, et al. Status quo of study on machine's load identification technique[J]. Noise and Vibration Control, 2011, 31(4):1-5. (in Chinese)
[7] 杨智春, 贾有. 动载荷的识别方法[J]. 力学进展, 2015, 45(1):29-54. Yanf Zhichun, Jia You. The identification of dynamic[J]. Advances in Mechanics, 2015, 45(1):29-54. (in Chinese)
[8] Nordstrom Lars. Load identification using time domain method[D]. Gothenburg, Sweden:2003. Chalmers University of Technology, 2003.
[9] Atsushi Furukawa. A method to predict track geometry-induced vertical vehicle motion[J]. Quarterly Report of Railway Technical Research Institute (RTRI), 2004, 45(3):142-148.
[10] Atsushi Furukawa. Identification of rolling stock lateral dynamic characteristics and their track irregularity maintains applications[J]. Quarterly Report of Railway Technical Research Institute (RTRI), 2007, 77(5):325-337.
[11] Uhl Tadeusz. The inverse identification problem and its technical application[J]. Archive of Applied Mechanics, 2007, 77(5):325-337.
[12] 朱涛, 肖守讷, 阳光武. 一种新的时域动态载荷识别方法[J]. 西南交通大学学报, 2012, 47(6):968-973. Zhu Tao, Xiao Shoune, Yang Guangwu. A new time-domain method for force identification[J]. Journal of Southwest Jiaotong University, 2012, 47(6):968-973. (in Chinese)
[13] 朱涛, 肖守讷, 阳光武, 等. 车辆垂向轮轨力识别方法与试验[J]. 振动、测试与诊断, 2015, 35(5):892-896. Zhu Tao, Xiao Shoune, Yang Guangwu, et al. Vertical wheel/rail force identification method for railway vehicle and its test validation[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5):892-896. (in Chinese)
[14] Xia F. The estimation of wheel-rail interaction force from wagon accelerations[C]. The 4th Australasian Congress on Applied Mechanics. Melbourne, Australia:Institute of Materials Engineering Australasia Ltd., 2005:333-338.
[15] Xia F, Cole C, Wolfs P. An inverse railway wagon model and its application[J]. Vehicle System Dynamics. 2007, 45(6):583-605.
[16] Xia F, Cole C, Wolfs P. Grey box based inverse wagon model to predict wheel-rail contact forces from measured wagon body response[J]. Vehicle System Dynamics, 2008, 46(Suppl 1):469-479.
[17] Berggren E G, Li M X D, Spännar J. A new approach to the analysis and presentation of vertical track geometry quality and rail roughness[J]. Wear, 2008, 265(9-10):1488-1496.
[18] Wakui H, Okuda H. A study on limit state design method for prestressed concrete sleepers[J]. Concreate Library of Japan Society of Civil Engineers, 1999, 33(1):1-25.
[19] 王卫东, 牛留斌, 刘金朝. 基于轴箱垂向加速度中高频轮轨垂向力软测量模型[J]. 中国铁道科学, 2013, 34(2):100-105. Wang Weidong, Niu Liubin, Liu Jinzhao. Software measurement model for middle and high frequency vertical wheel-rail force based on axle box vertical acceleration[J]. China Railway Science, 2013, 34(2):100-105. (in Chinese)
[20] 郭剑峰, 王卫东, 刘金朝, 等. 基于极端学习机的轮轨力预测研究[J]. 铁道建筑, 2014, 54(4):114-117. Guo Jianfeng, Wang Weidong, Liu Jinzhao, et al. Wheel/rail identification based on extreme learning machine[J]. Railway Engineering, 2014, 54(4):114-117. (in Chinese)
[21] 韦凯, 杨帆, 王平, 等. 扣件胶垫刚度频变的车/轨耦合系统随机振动虚拟辛分析[J]. 工程力学, 2016, 33(9):123-130. Wei Kai, Yang Fan, Wang Ping, et al. Symplectic random vibration analysis of vehicle-track coupled system considering frequency-dependent stiffness of railpads[J]. Engineering Mechanics, 2016, 33(9):123-130. (in Chinese)
[22] Bai L, Liu J Z, Xu A M, et al. Boundary extension technique for hht based on response surface method[J]. Applied Mechanics & Materials, 2012, 256(12):2854-2862.
[23] Botchev M A, Sleijpen G L G, Sopaheluwakan A. An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems[J]. Linear Algebra & Its Applications, 2017, 431(3):427-440.
[24] Welch G, Bishop G. An introduction to the Kalman filter[M]. London UK:University of North Carolina at Chapel Hill, 2001.
[25] Soomro Z A. Dual estimation of lateral analysis for railway vehicle wheelset to control disturbance for smooth running[J]. International Journal of Automation & Smart Technology, 2017, 7(3):119-123.
[26] Garg V K, Dukkipati R V. Dynamics of railway vehicle system[M]. INC. (London) Ltd24/28 Oval Road, London NW17DX, Academic Press, 1998.
[1] 任鹏, 周智, 白石, 欧进萍. 桁架结构疲劳监测的应变响应估计方法研究[J]. 工程力学, 2018, 35(9): 114-125.
[2] 许斌, 王云. 利用部分加速度测量的结构滞回特性免模型识别[J]. 工程力学, 2018, 35(2): 180-187.
[3] 张纯, 陈林, 宋固全, 田福志. 基于l1正则化无迹卡尔曼滤波的结构损伤方法[J]. 工程力学, 2017, 34(8): 76-84.
[4] 梅竹, 吴斌, 杨格. 钢筋混凝土结构材料本构模型参数的在线识别[J]. 工程力学, 2016, 33(7): 108-115.
[5] 何浩祥, 吕永伟, 韩恩圳. 基于静动力凝聚及扩展卡尔曼滤波的连续梁桥损伤识别[J]. 工程力学, 2015, 32(7): 156-163.
[6] 张瑾, 王天舒, 翟坤. 柔性太阳帆航天器大角度机动控制研究[J]. 工程力学, 2014, 31(11): 225-230,236.
[7] 李翔宇,许杨剑,王效贵,梁利华. 基于卡尔曼滤波算法的功能梯度材料参数辨识[J]. 工程力学, 2013, 30(11): 251-259.
[8] 许 贤;罗尧治;沈雁彬. 张力结构的动态控制研究[J]. 工程力学, 2011, 28(5): 186-193.
[9] 林 伟;李忠献;倪一清. 基于信赖域方法的MR阻尼器瞬时最优半主动控制[J]. 工程力学, 2009, 26(9): 36-042,.
[10] 戈新生;吕 杰. 带有万向联轴节双刚体航天器姿态运动的最优控制[J]. 工程力学, 2009, 26(9): 201-207,.
[11] 任宜春;易伟建. 结构物理参数识别的多尺度参数卡尔曼滤波方法[J]. 工程力学, 2008, 25(5): 0-005,.
[12] 袁长清;李俊峰;王天舒;宝音贺西. 基于逆系统方法的航天器姿态跟踪最优鲁棒控制[J]. 工程力学, 2008, 25(2): 0-218.
[13] 唐晓腾;陈 力. 漂浮基双臂空间机器人基于自适应遗传算法的最优非完整运动规划[J]. 工程力学, 2008, 25(2): 0-229.
[14] 孙 凯;戈新生. 航天器太阳帆板伸展过程最优控制的粒子群优化算法[J]. 工程力学, 2007, 24(9): 0-192.
[15] 樊素英;李忠献. 桥梁结构物理参数识别的双单元子结构法[J]. 工程力学, 2007, 24(6): 0-072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日