工程力学 ›› 2018, Vol. 35 ›› Issue (11): 134-145.doi: 10.6052/j.issn.1000-4750.2017.07.0588

• 土木工程学科 • 上一篇    下一篇

主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估

周洲1,2, 于晓辉1,2, 吕大刚1,2   

  1. 1. 哈尔滨工业大学结构工程灾变与控制教育部重点实验室, 哈尔滨 150090;
    2. 哈尔滨工业大学土木工程学院智能防灾减灾工业与信息化部重点实验室, 哈尔滨 150090
  • 收稿日期:2017-07-30 修回日期:2017-12-14 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 于晓辉(1982-),男,辽宁丹东人,副研究员,博士,硕导,从事地震易损性和概率风险分析研究(E-mail:yxhhit@126.com). E-mail:yxhhit@126.com
  • 作者简介:周洲(1991-),男,河北廊坊人,博士生,从事主余震抗震性能分析、结构风险分析研究(E-mail:zzhouhit@163.com);吕大刚(1970-),男,黑龙江铁力人,教授,博士,博导,副院长,主要从事结构可靠度、工程风险分析、地震工程等研究(E-mail:ludagang@hit.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51408155,51678209);中国博士后科学基金项目(2014M551251);科技支撑计划项目(2013BAJ08B01)

FRAGILITY ANALYSIS AND SAFETY EVALUATION OF REINFORCED CONCRETE FRAME STRUCTURES SUBJECTED TO MAINSHOCK-AFTERSHOCK EARTHQUAKE SEQUENCES

ZHOU Zhou1,2, YU Xiao-hui1,2, LU Da-gang1,2   

  1. 1. Key Lab of Structure Dynamic Behavior and Control of China Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;
    2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disaster of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
  • Received:2017-07-30 Revised:2017-12-14 Online:2018-11-07 Published:2018-11-07

摘要: 余震将给主震损伤结构造成“二次损伤”,威胁结构的地震安全。鉴于此,该文基于传统地震易损性理论,分别采用真实主余震序列和人工构造主余震序列作为地震输入,选择一栋按我国规范设计的5层钢筋混凝土框架结构作为研究对象,对主余震序列作用下的结构易损性进行研究。基于结构在主余震序列作用下的易损性结果,分别计算结构在不同危险性水平的主余震序列作用下的极限状态失效概率、破坏状态失效概率和易损性指数,评估结构在主余震序列作用下的地震安全。分析结果表明:主余震序列作用下的结构易损性要高于主震单独作用下的结构易损性。人工构造主余震序列要比真实主余震序列对结构造成更大的易损性。在真实和人工主余震序列中,基于重复法构造的人工主余震序列对结构的潜在破坏能力最强,而基于衰减法构造的人工主余震序列与真实主余震序列对结构的潜在破坏能力较为接近。

关键词: 主余震序列, 地震易损性, 地震安全, 钢筋混凝土框架, 增量损伤

Abstract: Aftershocks can cause additional damage to mainshock-damaged structures and threaten structural safety under earthquakes. In the light of this, this study extends the conventional seismic fragility theory and conducts the fragility analysis for a five-story RC frame structure designed according to the current Chinese design codes using the earthquake inputs of real and artificial mainshock-aftershock earthquake sequences. Based on the obtained fragility results for earthquake sequences, the limit state failure probabilities, damage state failure probabilities, and the vulnerability index corresponding to the earthquake sequences of different hazard levels are calculated for evaluating the structural safety under sequential earthquakes. The results show that the structural fragility due to mainshock-aftershock earthquake sequences is higher than that due to mainshock earthquakes alone. The artificial earthquake sequences may cause larger structural fragility than the real earthquake sequences. The artificial earthquake sequences based on the repeated method shows the largest damage potential for the structure among the used real and artificial earthquake sequences. The artificial earthquake sequences based on the attenuation method has a similar damage potential to real earthquake sequences.

Key words: mainshock-aftershock sequence, seismic fragility, seismic safety, RC frame, incremental damage

中图分类号: 

  • TU375.4
[1] Hatzigeorgiou G D, Liolios A A. Nonlinear behaviour of RC frames under repeated strong ground motions[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10):1010-1025.
[2] Van de Lindt J W. Experimental investigation of the effect of multiple earthquakes on wood-frame structural integrity[J]. Practice Periodical on Structural Design and Construction, 2008, 13(3):111-117.
[3] 张沛洲, 康谨之, 欧进萍. 主余震序列作用下钢混框架结构损伤与抗震性能分析[J]. 地震工程与工程振动, 2014(3):1-8. Zhang Peizhou, Kang Jinzhi, Ou Jinping. Damage and seismic performance analysis of RC frame structures under mainshock-aftershock earthquake sequences[J]. Earthquake Engineering and Engineering Dynamics, 2014(3):1-8. (in Chinese)
[4] 徐骏飞, 陈隽, 丁国. 基于IDA的主余震序列作用下RC框架易损性分析与生命周期费用评估[J]. 地震工程与工程振动, 2015, 35(4):206-212. Xu Junfei, Chen Jun, Ding Guo. Fragility analysis and life cycle cost assessment of RC frame under mainshock-aftershock seismic sequences through IDA[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(4):206-212. (in Chinese)
[5] 张永群, 陈隽, 孙潮旭. 序列型地震作用下考虑损伤的强度折减系数[J]. 地震工程与工程振动, 2016, 36(4):139-146. Zhang Yongqun, Chen Jun, Sun Chaoxu. Damage-based strength reduction factor for sequence-type ground motions[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4):139-146. (in Chinese)
[6] 于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3):47-53. Yu Xiaohui, Lu Dagang, Xiao Han. Incremental damage spectra of mainshock-aftershock sequence-type ground motions[J]. Engineering Mechanics, 2017, 34(3):47-53. (in Chinese)
[7] 吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10):41-48. Lu Dagang, Yu Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10):41-48. (in Chinese)
[8] Kennedy R P, Ravindra M K. Seismic fragilities for nuclear power plant risk studies[J]. Nuclear Engineering and Design, 1984, 79(1):47-68.
[9] 宁超列, 王丽萍. 考虑梁柱节点模型的钢筋混凝土框架地震易损性研究[J]. 工程力学, 2015, 32(9):183-190. Ning Chaolie, Wang Liping. Research on seismic fragility of reinforced concrete frames considering a beam-column joint model[J]. Engineering Mechanics, 2015, 32(9):183-190. (in Chinese)
[10] 罗文文, 李英民, 韩军. 基于全概率PBEE方法的RC框架结构地震损失分析[J]. 工程力学, 2016, 33(9):186-194. Luo Wenwen, Li Yingmin, Han Jun. Earthquake loss estimation for RC frames based on PEER-PBEE methodology[J]. Engineering Mechanics, 2016, 33(9):186-194. (in Chinese)
[11] 吴迪, 李健军, 谭平, 等. 串联隔震结构体系的地震易损性分析[J]. 工程力学, 2017, 34(增刊):227-232. Wu Di, Li Jianjun, Tan Ping, et al. Seismic vulnerability analysis of series isolated structural systems[J]. Engineering Mechanics, 2017, 34(Suppl):227-232. (in Chinese)
[12] 于晓辉, 吕大刚, 王光远. 基于地震易损性解析函数的概率地震风险分析应用研究. 建筑结构学报. 2013, 34(10):49-56. Yu Xiaohui, Lu Dagang, Wang Guangyuan. Application study of probability seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10):49-56. (in Chinese)
[13] Wen Y K, Ellingwood B R, Bracci J M. Vulnerability function framework for consequence-based engineering[J]. MAE Center Report 04-04, 2004.
[14] 于晓辉, 吕大刚, 范峰. 基于易损性指数的钢筋混凝土框架结构地震损伤评估[J]. 工程力学, 2017(1):69-75. Yu Xiaohui, Lu Dagang, Fan Feng. Seismic damage assessment of RC frame structures based on vulnerability index[J]. Engineering Mechanics, 2017(1):69-75. (in Chinese)
[15] 于晓辉, 吕大刚, 郑浩琴. 基于结构典型失效模式的地震侧向倒塌易损性分析[J]. 建筑结构学报, 2014, 35(8):8-14. Yu Xiaohui, Lu Dagang, Zheng Haoqin. Seismic sideway collapse fragility analysis based on structural typical failure modes[J]. Journal of Building Structures, 2014, 35(8):8-14. (in Chinese)
[16] 于晓辉, 吕大刚. 基于易损性的钢筋混凝土框架结构抗震性能裕度评估[J]. 建筑结构学报, 2016, 37(9):53-60. Yu Xiaohui, Lu Dagang. Fragility-based assessment of seismic performance margin for RC frame structures[J]. Journal of Building Structures, 2016, 37(9):53-60. (in Chinese)
[17] Goda K, Taylor C A. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(15):2311-2330.
[18] Hatzigeorgiou G D, Beskos D E. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes[J]. Engineering Structures, 2009, 31(11):2744-2755.
[19] Song R, Li Y, van de Lindt J W. Consideration of Mainshock-Aftershock Sequences into Performance-Based Seismic Engineering[C]//Structures Congress 2013:Bridging Your Passion with Your Profession. ASCE, 2013:2161-2167.
[20] Li Y, Song R, van de Lindt J W. Collapse fragility of steel structures subjected to earthquake mainshock-aftershock sequences[J]. Journal of Structural Engineering, 2014, 140(12):04014095.
[21] Gutenberg G, Richter C F. Seismicity of the earth and associated phenomena, Howard Tatel[J]. Journal of Geophysical Research, 1950, 55:97.
[22] 吴巧云, 朱宏平, 樊剑. 基于性能的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2012, 29(9):117-124. Wu Qiaoyun, Zhu Hongping, Fan Jian. Performancebased seismic fragility analysis of RC frame structures[J]. Engineering Mechanics, 2012, 29(9):117-124. (in Chinese)
[23] Yu Xiaohui, Lu Dagang, Li Bing. Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis[J]. Earthquakes and Structures, 2016, 10(1):141-161.
[24] 于晓辉, 吕大刚. HAZUS相容的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2016, 33(3):152-160. Yu Xiaohui, Lu Dagang. Hazus-compatible seismic fragility analysis for RC frame structures[J]. Engineering Mechanics, 2016, 33(3):152-160. (in Chinese)
[25] GB50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[26] GB/T 17742-2008, 中国地震烈度表[S]. 北京:中国标准出版社, 2008. GB/T 17742-2008, The Chinese seismic intensity scale[S]. Beijing:Standards Press of China, 2008. (in Chinese)
[1] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[2] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[3] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[4] 陈力波, 黄才贵, 谷音. 基于改进响应面法的公路简支梁桥地震易损性分析[J]. 工程力学, 2018, 35(4): 208-218.
[5] 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4): 69-77.
[6] 刘浩, 李宏男. 考虑累积损伤退化及应变率效应的钢筋混凝土框架结构倒塌分析[J]. 工程力学, 2018, 35(4): 87-95.
[7] 李勇, 闫维明, 刘晶波, 解梦飞. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学, 2018, 35(4): 52-60,86.
[8] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3): 151-158.
[9] 陈力波, 王嘉嘉, 上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学, 2018, 35(1): 160-171,181.
[10] 吕大刚, 代旷宇, 于晓辉, 李宁. FRP加固非延性RC框架结构的地震易损性分析[J]. 工程力学, 2017, 34(增刊): 49-53,70.
[11] 张沛洲, 孙宝印, 古泉, 欧进萍. 基于数值子结构方法的低延性RC框架结构抗震性能精细化分析[J]. 工程力学, 2017, 34(增刊): 38-48.
[12] 白久林, 金双双, 欧进萍. 钢筋混凝土框架结构强柱弱梁整体失效模式可控设计[J]. 工程力学, 2017, 34(8): 51-59.
[13] 黄超, 梁兴文. FRC框架结构地震风险评估的简化方法[J]. 工程力学, 2017, 34(7): 117-125.
[14] 卢杰志, 张耀庭, 郭宗明, 王晓伟. 多层预应力混凝土框架结构基于IDA的地震易损性分析[J]. 工程力学, 2017, 34(6): 109-119.
[15] 卢啸, 陆新征, 李梦珂, 顾栋炼, 解琳琳. 地震作用设计参数调整对框架结构抗震设计及安全性的影响[J]. 工程力学, 2017, 34(4): 22-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[2] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[3] 郭薇薇;夏禾;徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006, 23(2): 103 -110 .
[4] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
[5] 贺瑞;秦权. 产生时程分析用的高质量地面运动时程的新方法[J]. 工程力学, 2006, 23(8): 12 -18 .
[6] 顾明;叶丰. 高层建筑风致响应的简化分析方法[J]. 工程力学, 2006, 23(8): 57 -61,4 .
[7] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[8] 许福友;陈艾荣. 平板颤振导数的参数弹性研究[J]. 工程力学, 2006, 23(7): 60 -64 .
[9] 曹树谦;;陈予恕;. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68 -079 .
[10] 陈伟球;严 蔚. 混凝土结构服役智能化的若干研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ): 91 -105 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日