工程力学 ›› 2018, Vol. 35 ›› Issue (11): 45-52,78.doi: 10.6052/j.issn.1000-4750.2017.07.0576

• 土木工程学科 • 上一篇    下一篇

扁平箱梁涡激共振阻塞效应及振幅修正

李永乐1, 陈星宇1, 汪斌1, 朱乐东2   

  1. 1. 西南交通大学桥梁工程系, 四川, 成都 610031;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2017-07-27 修回日期:2017-11-13 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 汪斌(1983-),男,湖南人,副教授,博士,硕导,主要从事桥梁风致振动研究(E-mail:wangbinwvb@swjtu.edu.cn). E-mail:wangbinwvb@swjtu.edu.cn
  • 作者简介:李永乐(1972-),男,河南人,教授,博士,博导,主要从事桥梁抗风及车桥耦合振动研究(E-mail:lele@swjtu.edu.cn);陈星宇(1994-),男,四川人,博士生,主要从事桥梁风致振动研究(E-mail:ysyfcxy@126.com);朱乐东(1965-),男,浙江人,研究员,博士,博导,主要从事桥梁与建筑结构抗风研究(E-mail:ledong@mail.tongji.edu.cn).
  • 基金资助:
    国家杰出青年科学基金项目(51525804);四川省青年科技创新团队(15CXTD0004);土木工程防灾国家重点实验室开放项目(SLDRCE14-01)

BLOCKAGE-EFFECTS AND AMPLITUDE CONVERSION OF VORTEXINDUCED VIBRATION FOR FLAT-BOX GIRDER

LI Yong-le1, CHEN Xing-yu1, WANG Bin1, ZHU Le-dong2   

  1. 1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;
    2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2017-07-27 Revised:2017-11-13 Online:2018-11-07 Published:2018-11-07

摘要: 风洞试验是涡激振动研究最为重要的手段之一。由于风洞尺寸的限制,涡激共振试验中存在一定的阻塞效应,然而已有关于涡激振动阻塞比效应的研究较为少见。数值风洞模拟方法可以自定义尺寸大小,从而避免实际风洞尺寸的限制。该文采用数值风洞方法,针对大跨度桥梁扁平箱梁,在阻塞比为1%、2.5%、3.89%、5%和8.75%下进行了竖向涡激共振分析,主要研究阻塞效应对扁平箱梁的气动力、涡激力及其分量、涡振振幅和流场等的影响。结果表明:随着阻塞比的增大,扁平箱梁的静力三分力系数、涡激升力、涡振振幅和受箱梁影响的流场范围均增大;涡激升力各分量的变化趋势各不相同,其中做正功的线性气动阻尼力先略减小后增大,做负功的非线性气动阻尼力持续减小;在2.5%阻塞比以内,上述各项的变化幅度几乎都在5%以内。最后,基于数值结果,该文给出了扁平箱梁涡振振幅的阻塞效应修正系数。

关键词: 涡激共振, 阻塞效应, 振幅修正, 数值模拟, 扁平箱梁

Abstract: Wind tunnel test is one of the most important methods for vortex-induced vibration (VIV) research. Due to the limitation of the wind tunnel size, blockage-effects exist in the tests of VIV. However, the research is relatively scarce about the blockage-effects. In the numerical wind tunnel simulation, the size can be defined by users. Therefore, it can get rid of the size limitation of a real wind tunnel. Taking a flat-box-girder as the research object, numerical wind tunnel simulation was adopted to simulate the vertical VIV with blockage ratios of 1%, 2.5%, 3.89%, 5% and 8.75%. The blockage-effects of this girder were studied on its aerodynamic forces, vortex-induced lift forces and their components, vortex amplitudes, and flow fields. The results show that the aerodynamic coefficients, vortex-induced lift forces, vortex amplitudes and the flow field ranges influenced by the girder increased with the increase of the blockage ratio. The variation trend of each component of the vortex-induced lift forces is different. The linear aerodynamic damping force doing positive work decreases slightly and then increases, while the nonlinear aerodynamic damping force doing negative work continues to decrease with the increase of the blockage ratio. When the blockage ratio is less than 2.5%, the magnitudes of the changes of the above-mentioned items are almost within 5%. Finally, the amplitude correction coefficients of blockage-effects of VIV with flat-box-girder are developed by the numerical simulation results.

Key words: vortex-induced vibration, blockage-effects, amplitude correction, numerical simulation, flat-box girder

中图分类号: 

  • U443.35
[1] Larsen A, Esdahl S, Andersen J E, et al. Storebaelt suspension bridge-vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2):283-296.
[2] Fujino Y, Yoshida Y. Wind-induced vibration and control of Trans-Tokyo Bay crossing bridge[J]. Journal of Structural Engineering, 2002, 128(8):1012-1025.
[3] 孟晓亮, 郭震山, 丁泉顺, 等. 风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响[J]. 工程力学, 2011, 28(增刊):184-188, 194. Meng Xiaoliang, Guo Zhenshan, Ding Quanshun, et al. Influence of wind fairing angle on vortex-induced vibrations and flutter performances of closed and semi-closed box decks[J]. Engineering Mechanics, 2011, 28(Suppl 1):184-188, 194. (in Chinese)
[4] 孟晓亮. 大跨度钢箱梁桥竖向涡激共振非线性特性和机理研究[D]. 上海:同济大学, 2013. Meng Xiaoliang. Nonlinear behavior and mechanism of vertical vortex-induced vibration of long span steel-box-deck bridges[D]. Shanghai:Tongji University, 2013. (in Chinese)
[5] Battista R C, Pfeil M S. Reduction of vortex-induced oscillations of Rio-Niteroi bridge by dynamic control devices[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(3):273-288.
[6] Larose G L, Auteuil A D. On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5):365-376.
[7] 顾金钧, 赵煜澄, 邵克华. 九江长江大桥应用新型TMD抑制吊杆涡振[J]. 土木工程学报, 1994, 27(3):2-13. Gu Jinjun, Zhao Yucheng, Shao Kehua. Application of new TMD to suppressing vortex-shedding vibration of hangers of Jiujiang bridge over Yangtze River[J]. China Civil Engineering Journal, 1994, 27(3):2-13. (in Chinese)
[8] Simiu E, Scanlan R H. Wind effects on structures[M]. 3rd ed. USA, New York:John Wiley and Sons Incorporated, 1996.
[9] 孙延国, 廖海黎, 李明水. 基于节段模型试验的悬索桥涡振抑振措施[J]. 西南交通大学学报, 2012, 47(2):218-223, 264. Sun Yanguo, Liao Haili, Li Mingshui. Mitigation measures of vortex-induced vibration of suspension bridge based on section model test[J]. Journal of Southwest Jiaotong University, 2012, 47(2):218-223, 264. (in Chinese)
[10] 李永乐, 侯光阳, 向活跃, 等. 大跨度悬索桥钢箱主梁涡振性能优化风洞试验研究[J]. 空气动力学学报, 2011, 29(6):702-708. Li Yongle, Hou Guangyang, Xiang Huoyue, et al. Optimization of the vortex induced vibration for steel box girder of long span suspension bridges by wind tunnel test[J]. Acta Aerodynamica Sinica, 2011, 29(6):702-708. (in Chinese)
[11] 朱思宇, 李永乐, 申俊昕, 等. 大攻角来流作用下扁平钢箱梁涡振性能风洞试验优化研究[J]. 土木工程学报, 2015, 48(2):79-86. Zhu Siyu, Li Yongle, Shen Junxin, et al. Optimization of vortex-induced vibration of flat steel box girders at large attack angle by wind tunnel test[J]. China Civil Engineering Journal, 2015, 48(2):79-86. (in Chinese)
[12] 刘小兵, 张海东, 王彦彪. 扁平箱梁涡激力的展向相关特性研究[J]. 工程力学, 2016, 33(增刊1):239-243, 250. Liu Xiaobing, Zhang Haidong, Wang Yanbiao. Study on spanwise correlation of vortex-induced forces on a flat box girder[J]. Engineering Mechanics, 2016, 33(Suppl 1):239-243, 250. (in Chinese)
[13] 杨詠昕, 周锐, 罗东伟, 等. 不同槽宽分体箱梁桥梁的涡振及其控制措施[J]. 工程力学, 2017, 34(7):30-40. Yang Yongxin, Zhou Rui, Luo Dongwei, et al. Vortex-induced vibration and its control for twin box girder bridges with various slot widths[J]. Engineering Mechanics, 2017, 34(7):30-40. (in Chinese)
[14] Zhu L D, Meng X L, Guo Z S. Nonlinear mathematical model of vortex-induced vertical force on a flat closed-box bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 122:69-82.
[15] He X H, Li H, Wang H F, et al. Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170:56-67.
[16] Zhu Q, Xu Y L, Zhu L D, et al. Vortex-induced vibration analysis of long-span bridges with twin-box decks under non-uniformly distributed turbulent winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172:31-41.
[17] 程厚梅. 风洞实验干扰与修正[M]. 北京:国防工业出版社, 2003. Cheng Houmei. Wind tunnel experiment interference and correcrion[M]. Beijing:National Defence Industry Press, 2003. (in Chinese)
[18] 张学伟, 魏英杰, 张嘉钟, 等. 模型结构对通气超空泡影响的实验研究[J]. 工程力学, 2008, 25(9):203-208. Zhang Xuewei, Wei Yingjie, Zhang Jiazhong, et al. Experimental research on the effect of model structure on ventilated supercavity[J]. Engineering Mechanics, 2008, 25(9):203-208. (in Chinese)
[19] 徐枫, 欧进萍, 肖仪清. 不同截面形状柱体流致振动的CFD数值模拟[J]. 工程力学, 2009, 26(4):7-15. Xu Feng, Ou Jinping, Xiao Yiqing. CFD numerical simulation of flow-induced vibration with different cross-section cylinder[J]. Engineering Mechanics, 2009, 26(4):7-15. (in Chinese)
[20] 徐枫. 结构流固耦合振动与流动控制的数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2009. Xu Feng. Numerical simulation of fluid-solid coupling vibration and flow control of structures[D]. Harbin:Harbin Institute of Technology, 2009. (in Chinese)
[21] 周帅, 张志田, 陈政清, 等. 大长细比钝体构件涡激共振与驰振的耦合研究[J]. 工程力学, 2012, 29(1):176-186. Zhou Shuai, Zhang Zhitian, Chen Zhengqing, et al. Research on coupling of the vortex-excited resonance and galloping of the bluff body with large slenderness ratio[J]. Engineering Mechanics, 2012, 29(1):176-186. (in Chinese)
[22] Chen X Y, Li Y L, Wang B, Zhu L D. Investigation on surface distributed vortex-induced force on flat-closedbox girder using POD[C]//The 2016 World Congress on Advances in Civil, Environmental, and Materials Research. Jeju:2016.
[23] Chen X Y, Wang B, Zhu L D, et al. Numerical study on surface distributed vortex-induced force on a flat-steel-box girder[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1):41-56.
[24] Batina J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[25] Fluent F. Fluent 6.3 user's guide[M]. Fluent Incorporated, 2006.
[26] 张伟, 葛耀君. 方柱绕流粒子图像测速试验与数值模拟[J]. 同济大学学报(自然科学版), 2009, 37(7):857-861, 892. Zhang Wei, Ge Yaojun. Particle image velocimetry study and numerical simulation of turbulent near wake of square cylinder[J]. Journal of Tongji University (Natural Science), 2009, 37(7):857-861, 892. (in Chinese)
[1] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[2] 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364.
[3] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[4] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[5] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
[6] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[7] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249-256.
[8] 潘晓军, 张燕平, 陈曦, 高伟, 樊剑. 水平基底上薄膜流体的数学模型及其数值模拟[J]. 工程力学, 2018, 35(6): 24-32,41.
[9] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[10] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[11] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[12] 田甜, 雷洋, 齐法琳, 黎国清. 不同时速列车振动荷载下衬砌拱圈振动响应传递规律[J]. 工程力学, 2018, 35(5): 143-151.
[13] 韩艳, 李凯, 陈浩, 蔡春声, 董国朝. 桥面典型车辆气动特性及车辆间挡风效应的数值模拟研究[J]. 工程力学, 2018, 35(4): 124-134,185.
[14] 樊鹏玄, 陈务军, 赵兵. 盘绕式伸展臂收纳过程理论分析与数值模拟[J]. 工程力学, 2018, 35(3): 249-256.
[15] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张季超;丁晓敏;庞永师;李伍平;童华炜;郑先昌;许 勇. 广州市城市地下空间开发利用分析[J]. 工程力学, 2009, 26(增刊Ⅱ): 106 -114 .
[2] 陆新征;林旭川;叶列平;李 易;唐代远. 地震下高层建筑连续倒塌数值模型研究[J]. 工程力学, 2010, 27(11): 64 -070 .
[3] 肖映雄;周志阳;舒 适. 几类典型网格下三维弹性问题的代数多层网格法[J]. 工程力学, 2011, 28(6): 11 -018 .
[4] 鞠 伟;岑 松;傅向荣;龙驭球. 基于哈密顿解法的厚板边界效应典型算例分析[J]. 工程力学, 2008, 25(2): 0 -008 .
[5] 沈蒲生. 依次放松约束结点的子结构法[J]. 工程力学, 1984, 1(1): 81 -92 .
[6] 杨雪强;刘祖德;何世秀. 基于常规三轴试验的岩石双剪强度准则[J]. 工程力学, 2003, 20(4): 86 -91 .
[7] 高云峰;李俊峰. 卫星编队飞行中的队形设计研究[J]. 工程力学, 2003, 20(4): 128 -131, .
[8] 田秀云;杜洪增;孙智强. 金属材料疲劳裂纹扩展曲线的拟合方法研究[J]. 工程力学, 2003, 20(4): 136 -140 .
[9] 徐永福;傅德明. 非饱和土结构强度的研究[J]. 工程力学, 1999, 16(4): 73 -77,7 .
[10] 陈祖坪;陈式慧. 锥面的冰荷载[J]. 工程力学, 1999, 16(6): 82 -92 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日