工程力学 ›› 2018, Vol. 35 ›› Issue (11): 53-67.doi: 10.6052/j.issn.1000-4750.2017.07.0575

• 土木工程学科 • 上一篇    下一篇

PRC连梁-混合联肢剪力墙抗震性能分析

田建勃1, 史庆轩2, 刘云贺3, 李慎1, 马辉1   

  1. 1. 西安理工大学土木建筑工程学院, 西安 710048;
    2. 西安建筑科技大学土木工程学院, 西安 710055;
    3. 西安理工大学水利水电学院, 西安 710048
  • 收稿日期:2017-07-27 修回日期:2018-01-15 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 田建勃(1986-),男,陕西西安人,讲师,博士,从事钢与混凝土组合结构及抗震研究(E-mail:tianjianbo2006@sina.com). E-mail:tianjianbo2006@sina.com
  • 作者简介:史庆轩(1963-),男,山东-城人,教授,博士,博导,从事混凝土结构及抗震研究(E-mail:qingxuanshi@sina.com);刘云贺(1968-),男,辽宁凌源人,教授,博士,博导,从事水工结构及抗震研究(E-mail:liuyhe@xaut.edu.cn);李慎(1986-),男,山东济宁人,讲师,博士,从事钢结构及抗震研究(E-mail:lishen2861@163.com);马辉(1985-),男,江西赣州人,副教授,博士,硕导,从事钢与混凝土组合结构及再生混凝土结构研究(E-mail:mahuiwell@163.com).
  • 基金资助:
    国家自然科学基金项目(51608441,51478382,51408485);中国博士后科学基金面上项目(2017M613174);陕西省自然科学基础研究计划青年项目(2017JQ5032);陕西省高校科协青年人才托举计划项目(20170513)

RESEARCH ON ASEISMIC PERFORMANCE OF PRC COUPLING BEAM-HYBRID COUPLED SHEAR WALL SYSTEM

TIAN Jian-bo1, SHI Qing-xuan2, LIU Yun-he3, LI Shen1, MA Hui1   

  1. 1. School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China;
    2. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    3. Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China
  • Received:2017-07-27 Revised:2018-01-15 Online:2018-11-07 Published:2018-11-07

摘要: PRC连梁-混合联肢剪力墙是将传统的钢筋混凝土联肢剪力墙中的混凝土连梁用钢板-混凝土组合(PRC)连梁代替而形成的一种新型结构体系,对其抗震性能尚缺乏系统研究。该文在对PRC小跨高比连梁构件研究成果的基础上,设计出了PRC连梁-混合联肢剪力墙的BS基本模型试件,利用有限元软件对PRC连梁-混合联肢剪力墙抗震性能进行数值模拟,研究了连梁内嵌钢板部分、连梁钢筋部分和混凝土部分的应力分布情况,分析了结构的塑性铰发展规律。研究了耦联率、连梁截面尺寸、单面墙肢高宽比、楼层总高度和楼板作用等参数对该种新型结构体系抗震性能的影响,建议适合于高烈度抗震设防区PRC连梁-混合联肢剪力墙合理耦联率的取值范围为40%~60%。

关键词: 钢板-混凝土组合连梁, 混合联肢剪力墙, 塑性铰, 耦联率, 抗震性能

Abstract: PRC coupling beam-hybrid coupled shear wall system is a new structural system formed by replacing the concrete coupling beam with the plate-reinforced composite (PRC) coupling beam in traditional reinforced concrete coupled shear walls. It is still lack of systematic research on its aseismic behavior. Therefore, based on the aseismic performance study of the PRC coupling beam with a small span-to-depth ratio, the BS basic model specimen of the PRC coupling beam-hybrid coupled shear wall system is designed. The aseismic behavior of the PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software. The stress distribution of steel plates, reinforcing bars in coupling beams and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the influence of a coupling ratio, the section size of a coupling beam, the height-width ratio of a single side wall, the total height of a structure, and the role of a slab on the aseismic behavior of the new structural system is studied. It is recommended that the reasonable coupling ratio for the PRC coupling beam-hybrid coupled shear wall system in a high intensity seismic fortification area is from 40% to 60%.

Key words: plate-reinforced composite coupling beam, hybrid coupled shear wall system, plastic hinge, coupling ratio (CR), seismic behavior

中图分类号: 

  • TU398.2+.2
[1] 史庆轩, 田建勃, 王南, 等. 钢-混凝土组合连梁研究现状及其发展[J]. 建筑结构, 2014, 44(9):1-8. Shi Qingxuan, Tian Jianbo, Wang Nan, et al. Research status and development of the steel-concrete composite coupling beam[J]. Building Structure, 2014, 44(9):1-8. (in Chinese)
[2] Sherif E T, Christopher M K, Mohamed H. Pushover of hybrid coupled walls. I:design and modeling[J]. Journal of Structural Engineering, 2002, 128(10):1272-1281.
[3] Shahrooz B M, Remmetter M E, Qin F. Seismic design and performance of composite coupled walls[J]. Journal of Structural Engineering, 1993, 119(11):3291-3309.
[4] Harries K A, Gong B, Shahrooz B M. Behavior and design of reinforced concrete, steel, and steel-concrete coupling beams[J]. Earthquake Spectra, 2000, 16(4):775-799.
[5] Harries K A, Moulton J D, Clemson R L. Parametric study of coupled wall behavior-implications for the design of coupling beams[J]. Journal of Structural Engineering, 2004, 130(12):480-488.
[6] Morelli F, Manfredi M, Salvatore W. An enhanced component-based model for steel connection in a hybrid coupled shear wall structure:Development, calibration and experimental validation[J]. Computers and Structures, 2016, 176(5):50-69.
[7] Watchara C A, Sutat L, Subhash C G. Performance-based plastic design method for tall hybrid coupled walls[J]. Structural Design of Tall and Special Buildings, 2016, 25(14):681-699.
[8] 石韵, 苏明周, 梅许江, 等. 高耦连比新型混合连肢墙结构滞回性能拟静力试验研究[J]. 土木工程学报, 2013, 46(1):52-60. Shi Yun, Su Mingzhou, Mei Xujiang, et al. Experimental study on hysteretic behavior of innovative hybrid coupled wall system with high coupling ratio[J]. China Civil Engineering Journal, 2013, 46(1):52-60. (in Chinese)
[9] 伍云天, 周忠亮, 肖岩, 等. 钢连梁与钢-混凝土组合剪力墙连接抗震性能研究[J]. 建筑结构学报, 2015, 36(9):9-17, 52. Wu Yuntian, Zhou Zhongliang, Xiao Yan, et al. Experimental study on steel coupling beam and composite shear wall connection under simulated earthquake action[J]. Journal of Building Structures, 2015, 36(9):9-17, 52. (in Chinese)
[10] 晏小欢. 带组合连梁混合双肢剪力墙结构抗震性能实验与设计研究[D]. 长沙:中南大学, 2009. Yan Xiaohuan. Experimental and design study on seismic performance of hybrid coupled shear wall with steel-concrete composite coupling beams[D]. Changsha:Central South University, 2009. (in Chinese)
[11] 周颖, 缪驰, 闫峰, 等. 钢骨混凝土连梁联肢剪力墙抗震性能试验研究及有限元分析[J]. 建筑结构学报, 2015, 36(3):36-45. Zhou Ying, Miao Chi, Yan Feng, et al. Experimental study and FEA of seismic performance of coupled shear walls with steel reinforced concrete coupling beams[J]. Journal of Building Structures, 2015, 36(3):36-45. (in Chinese)
[12] 聂建国, 胡红松. 外包钢板-混凝土组合连梁试验研究I:抗震性能[J]. 建筑结构学报, 2014, 35(5):1-9. Nie Jianguo, Hu Hongsong. Experimental research on concrete filled steel plate composite coupling beams I:seismic behavior[J]. Journal of Building Structures, 2014, 35(5):1-9. (in Chinese)
[13] 纪晓东, 钱稼茹. 震后功能可快速恢复联肢剪力墙研究[J]. 工程力学, 2015, 32(10):1-8. Ji Xiaodong, Qian Jiaru. Study of earthquake-resilient coupled shear walls[J]. Engineering Mechanics, 2015, 32(10):1-8. (in Chinese)
[14] Ji X D, Liu D, Sun Y, et al. Seismic performance assessment of a hybrid coupled wall system with replaceable steel coupling beams versus traditional RC coupling beams[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(4):517-535.
[15] 汪梦甫, 王义俊. 高阻尼混凝土带钢板暗支撑双肢剪力墙抗震性能试验研究[J]. 工程力学, 2017, 34(1):204-212. Wang Mengfu, Wang Yijun. Study on seismic performance of high damping concrete coupled shear walls with concealed steel plate bracings[J]. Engineering Mechanics, 2017, 34(1):204-212. (in Chinese)
[16] 骆欢, 杜轲, 孙景江, 等. 联肢剪力墙非线性分析模型研究及数值模拟验证[J]. 工程力学, 2017, 34(4):140-149, 159. Luo Huan, Du Ke, Sun Jingjiang, et al. Nonlinear analysis model and numerical simulation of coupled wall systems[J]. Engineering Mechanics, 2017, 34(4):140-149, 159. (in Chinese)
[17] 史庆轩, 田建勃, 王秋维, 等. 小跨高比钢板-混凝土组合连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(2):104-114. Shi Qingxuan, Tian Jianbo, Wang Qiuwei, et al. Experimental research on seismic behavior of plate-reinforced composite coupling beams with small span-to-depth ratio[J]. Journal of Building Structures, 2015, 36(2):104-114. (in Chinese)
[18] 田建勃, 史庆轩, 陶毅, 等. 小跨高比钢板-混凝土组合连梁受力与变形性能研究[J]. 建筑结构学报, 2016, 37(12):83-96. Tian Jianbo, Shi Qingxuan, Tao Yi, et al. Research on mechanics and deformation performance of plate-reinforced composite coupling beams with small span-to-depth ratio[J]. Journal of Building Structures, 2016, 37(12):83-96. (in Chinese)
[19] 田建勃, 史庆轩, 王南, 等. 基于软化拉-压杆模型的小跨高比钢板-混凝土组合连梁受剪承载力分析[J]. 工程力学, 2016, 33(5):142-149. Tian Jianbo, Shi Qingxuan, Wang Nan, et al. Shear strength of plate-reinforced composite coupling beams with small span-to-depth ratio using softened strut-and-tie model[J]. Engineering Mechanics, 2016, 33(5):142-149. (in Chinese)
[20] 梁兴文, 史金田, 车佳玲, 等. 混凝土联肢剪力墙结构抗震性能控制方法[J]. 工程力学, 2013, 30(11):207-213. Liang Xingwen, Shi Jintian, Che Jialing, et al. A seismic behavior control method for concrete coupled shear walls[J]. Engineering Mechanics, 2013, 30(11):207-213. (in Chinese)
[21] NZS 3101-1995, Concrete structures standard[S]. New Zealand:The Colour Guy, 2006.
[22] CSA A23.3-04, Design of concrete structures[S]. Canadian:Canadian Standards Association, 2004.
[23] Mohamed H, Sherif E T. Inelastic dynamic behavior of hybrid coupled walls[J]. Journal of Structural Engineering, 2004, 130(2):285-296.
[24] 包世华. 新编高层建筑结构[M]. 第3版. 北京:中国水利水电出版社, 2013:120-140. Bao Shihua. New high-rise building structure[M]. 3rd ed. Beijing:China Water & Power Press, 2013:120-140. (in Chinese)
[25] 伍云天, 李英民, 张祁, 等. 美国组合联肢剪力墙抗震设计方法探讨[J]. 建筑结构学报, 2011, 32(12):137-144. Wu Yuntian, Li Yingmin, Zhang Qi, et al. Seismic design of hybrid coupled walls in United States[J]. Journal of Building Structures, 2011, 32(12):137-144. (in Chinese)
[26] 石韵. 含型钢边缘构件高层混合连肢墙结构的抗震性能及设计方法研究[D]. 陕西:西安建筑科技大学, 2013. Shi Yun. Experimental study on seismic behavior and design criterion of hybrid coupled wall system with steel boundary elements[D]. Shaanxi:Xi'an University of Architecture & Technology, 2013. (in Chinese)
[27] GB 50010-2010, 混凝土结构设计规范(2015年版)[S]. 北京:中国建筑工业出版社, 2015. GB 50010-2010, Code for design of concrete structures (2015 Edition)[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[28] GB 50011-2010, 建筑抗震设计规范(2016年版)[S]. 北京:中国建筑工业出版社, 2016. GB 50011-2010, Code for seismic design of buildings (2016 Edition)[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[29] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2011. JGJ 3-2010, Technical specification for concrete structures of tall building[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[30] Saenz L P. Discussion of equation for the stress-strain curve of concrete by desayi and krishnan[J]. ACI Structural Journal, 1964, 61(9):1229-1235.
[31] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4):59-67, 82. Nie Jianguo, Wang Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4):59-67, 82. (in Chinese)
[32] 王宇航. 曲线梁桥钢管混凝土桥墩的扭转效应研究[D]. 北京:清华大学, 2013. Wang Yuhang. Study on torsion effect in concrete filled steel tube piers of curved girder bridges[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[33] CEB-FIP, Model Code 90[S]. Lausanne:Mai, 1993.
[34] 沈聚敏, 王传志, 江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 北京:清华大学出版社, 1993:50-51. Shen Jumin, Wang Chuanzhi, Jiang Jianjing. Finite element and limit analysis of plate and shell on reinforced concrete[M]. Beijing:Tsinghua University Press, 1993:50-51. (in Chinese)
[35] Hibbitt, Karlsson, Sorensen. ABAQUS/Standard User Subroutines Reference Manual[M]. USA:The Pennsylvania State University, 1998:1-200.
[36] Su R K L, Lam W Y, Pam H J. Behavior of embedded steel plate in composite coupling beams[J]. Journal of Constructional Steel Research, 2008(64):1112-1128.
[37] 黄羽立, 陆新征, 叶列平, 等. 基于多点位移控制的推覆分析算法[J]. 工程力学, 2011, 28(2):18-23. Huang Yuli, Lu Xinzheng, Ye Lieping, et al. A pushover analysis algorithm based on multiple point constraints[J]. Engineering Mechanics, 2011, 28(2):18-23. (in Chinese)
[38] 黄东升, 程文瀼, 彭飞. 对称双肢短肢剪力墙的低周反复荷载试验研究[J]. 建筑结构学报, 2005, 26(3):51-56. Huang Dongsheng, Cheng Wenrang, Peng Fei. Low-cycle loading experiment study on symmetric double short-pier shear walls[J]. Journal of Building Structures, 2005, 26(3):51-56. (in Chinese)
[1] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[2] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[3] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[4] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[5] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[6] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[7] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[8] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[9] 支旭东, 张英楠, 范峰, 沈世钊. 单层球面网壳的多重地震效应研究[J]. 工程力学, 2018, 35(9): 107-113,125.
[10] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[11] 孙建, 邱洪兴, 谭志成, 蒋洪波. 采用螺栓连接的工字形全装配式RC剪力墙试验研究[J]. 工程力学, 2018, 35(8): 172-183,191.
[12] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46.
[13] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[14] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[15] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖映雄;周志阳;舒 适. 几类典型网格下三维弹性问题的代数多层网格法[J]. 工程力学, 2011, 28(6): 11 -018 .
[2] 鞠 伟;岑 松;傅向荣;龙驭球. 基于哈密顿解法的厚板边界效应典型算例分析[J]. 工程力学, 2008, 25(2): 0 -008 .
[3] 刘春梅, 肖映雄, 舒适, 钟柳强. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学, 2012, 29(9): 60 -67,91 .
[4] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[5] 姜忻良 张崇祥 姜南 罗兰芳. 设备-结构-土体系振动台实时子结构试验方法探讨[J]. 工程力学, 0, (): 0 .
[6] 袁全, 袁驷, 李易, 闫维明, 邢沁妍. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018, 35(8): 9 -13 .
[7] 王贞, 李强, 吴斌. 实时混合试验的自适应时滞补偿方法[J]. 工程力学, 2018, 35(9): 37 -43 .
[8] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107 -112 .
[9] 潘天林, 吴斌. 基于桁架单元的能量一致积分方法[J]. 工程力学, 2018, 35(10): 1 -9,36 .
[10] 郑欣, 刘宇斌, 陈璞, 沈峰, 张圣君, 傅向荣. 基于弯扭耦合理论的颤振频率计算方法[J]. 工程力学, 2018, 35(S1): 1 -5,12 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日