工程力学 ›› 2018, Vol. 35 ›› Issue (11): 8-16.doi: 10.6052/j.issn.1000-4750.2017.07.0570

• 基本方法 • 上一篇    下一篇

脉动风速连续随机场的降维模拟

刘章军1,2, 叶永友2, 刘增辉2   

  1. 1. 武汉工程大学土木工程与建筑学院, 湖北, 武汉 430074;
    2. 三峡大学土木与建筑学院, 湖北, 宜昌 443002
  • 收稿日期:2017-07-24 修回日期:2018-01-05 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 刘章军(1973-),男,湖北人,教授,博士,博导,主要从事工程结构抗震抗风研究(E-mail:liuzhangjun73@aliyun.com). E-mail:liuzhangjun73@aliyun.com
  • 作者简介:叶永友(1993-),男,湖北人,硕士生,主要从事工程结构抗风研究(E-mail:yeyongyou1993@aliyun.com);刘增辉(1991-),男,湖北人,硕士生,主要从事工程结构抗风研究(E-mail:liuzenghuictgu@163.com).
  • 基金资助:
    国家自然科学基金项目(51778343,51278282,50808113)

SIMULATION OF FLUCTUATING WIND VELOCITY CONTINUOUS STOCHASTIC FIELD BY DIMENSION REDUCTION APPROACH

LIU Zhang-jun1,2, YE Yong-you2, LIU Zeng-hui2   

  1. 1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan, Hubei 430074, China;
    2. College of Civil Engineering & Architecture, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2017-07-24 Revised:2018-01-05 Online:2018-11-07 Published:2018-11-07

摘要: 基于标准正交随机变量的波数谱表示,通过定义标准正交随机变量集的随机函数形式,建立了连续时空随机场模拟的波数谱-随机函数方法。同时,引入快速傅里叶变换(FFT)的算法,极大地提高了波数谱-随机函数方法的模拟效率。在波数谱-随机函数模拟方法中,仅需两个基本随机变量即可在概率密度层次上描述时空随机场的概率特性,并利用数论方法选取基本随机变量的代表性点集,实现对连续时空随机场模拟的降维表达。数值算例表明,当模拟相同数量的样本时,综合考虑模拟的效率和精度两方面,该文方法与传统的波数谱表示方法不分伯仲,但该文方法所需的基本随机变量最少,生成的代表性样本数量少且构成一个完备的概率集,从而可结合概率密度演化理论实现结构随机动力反应及动力可靠度的精细化分析。最后,结合Kaimal风速谱及Davenport空间相干函数模型,模拟了水平向脉动风速连续随机场,验证了该文方法的有效性和优越性。

关键词: 脉动风速, 时空随机场, 频率-波数谱, 随机函数, FFT算法, 降维

Abstract: Based on the frequency-wavenumber spectrum representation correlating with the standard orthogonal random variables, a hybrid approach of frequency-wavenumber spectrum and a random function for simulating the continuous spatio-temporal stochastic field is proposed by introducing the random function of standard orthogonal random variable sets. Meanwhile, the simulation efficiency of the proposed approach is greatly enhanced by employing Fast Fourier Transform (FFT) algorithm technique. Benefiting from the proposed approach, the probability characteristics of the spatio-temporal stochastic field can be described on the probability density level with only two elementary random variables. Therefore, the complete representative point sets with assigned probabilities of the elementary random variables can be obtained through the number-theoretical method. As a result, the dimension reduction representation of the continuous spatio-temporal stochastic field can be realized. Numerical examples indicate that when using the same number of samples and taking the efficiency and accuracy into consideration at the same time, the proposed approach have a similar simulation result to the conventional frequency-wavenumber spectrum representation. However, the smallest number of the elementary random variables is needed in the proposed approach, which leads to a smaller number of representative samples with a complete probability set. Consequently, it could naturally be combined with the probability density evolutionary method (PDEM) to carry out the accurate analysis of stochastic dynamic response and dynamic reliability assessment of engineering structures. Finally, combining the Kaimal fluctuating wind velocity spectrum with Davenport spatial coherence function, a numerical example of simulation for horizontal-fluctuating-wind velocity continuous stochastic field is presented to verify the accuracy and superiority of the proposed approach.

Key words: fluctuating wind velocity, spatio-temporal stochastic field, frequency-wavenumber spectrum, random function, FFT technique, dimension reduction

中图分类号: 

  • TU312.1
[1] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 上海:同济大学出版社, 2008. Huang Bencai, Wang Congjun. Principle and application of structural wind resistance analysis[M]. Shanghai:Tongji University Press, 2008. (in Chinese)
[2] Shinozuka M. Monte Carlo solution of structural dynamics[J]. Computers and Structures, 1972, 2(5/6):855-874.
[3] Shinozuka M, Jan C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1):111-128.
[4] 苏延文, 黄国庆, 彭留留. 与反应谱相容的多点完全非平稳地震动随机过程的快速模拟[J]. 工程力学, 2015, 32(8):141-148. Su Yanwen, Huang Guoqing, Peng Liuliu. Simulation of stochastic processes of fully non-stationary and response-spectrum-compatible multivariate ground motions[J]. Engineering Mechanics, 2015, 32(8):141-148. (in Chinese)
[5] Paola M D, Gullo I. Digital generation of multivariate wind field processes[J]. Probabilistic Engineering Mechanics, 2001, 16(1):1-10.
[6] Paola M D. Digital simulation of wind field velocity[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74/75/76:91-109.
[7] Yang J N. Simulation of random envelope processes[J]. Journal of Sound and Vibration, 1972, 21(1):73-85.
[8] Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
[9] Chen L, Letchford C W. Simulation of multivariate stationary Gaussian stochastic processes:hybrid spectral representation and proper orthogonal decomposition approach[J]. Journal of Engineering Mechanics, 2005, 131(8):801-808.
[10] Liu Zhangjun, Liu Zenghui, Peng Yongbo. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods[J]. Journal of Sound and Vibration, 2018, 418:144-162.
[11] Deodatis G, Shinozuka M. Simulation of seismic ground motion using stochastic waves[J]. Journal of Engineering Mechanics, 1989, 115(12):2723-2737.
[12] Benowitz B A, Deodatis G. Simulation of wind velocities on long span structures:a novel stochastic wave based model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147:154-163.
[13] Carassale L, Solari G. Wind modes for structural dynamics:a continuous approach[J]. Probabilistic Engineering Mechanics, 2002, 17(2):157-166.
[14] 刘章军, 王磊, 黄帅. 非平稳随机地震作用的结构整体可靠度分析[J]. 工程力学, 2015, 32(12):225-232. Liu Zhangjun, Wang Lei, Huang Shuai. Global reliability analysis of structures under non-stationary random earthquake excitations[J]. Engineering Mechanics, 2015, 32(12):225-232. (in Chinese)
[15] Liu Zhangjun, Liu Wei, Peng Yongbo. Random function based spectral representation of stationary and non-stationary stochastic processes[J]. Probabilistic Engineering Mechanics, 2016, 45:115-126.
[16] Liu Zhangjun, Liu Zixin, Peng Yongbo. Dimension reduction of karhunen-loeve expansion for simulation of stochastic processes[J]. Journal of Sound and Vibration, 2017, 408:168-189.
[17] Shinozuka M, Deodatis G. Simulation of multidimensional Gaussian stochastic fields by spectral representation[J]. Applied Mechanics Review, 1996, 49(1):29-53.
[18] Chen X, Kareem A. Proper orthogonal decompositionbased modeling, analysis, and simulation of dynamic wind load effects on structures[J]. Journal of Engineering Mechanics, 2005, 131(4):325-339.
[19] Zerva A. Seismic ground motion simulations from a class of spatial variability models[J]. Earthquake Engineering and Structural Dynamics, 1992, 21(4):351-361.
[20] Davenport A. The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87(372):194-211.
[21] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417):563-589.
[22] Liu Zhangjun, Liu Zixin, Chen Denghong. Probability density evolution of a nonlinear concrete gravity dam subjected to non-stationary seismic ground motion[J]. Journal of Engineering Mechanics, ASCE, 2018, 144(1):04017157.
[1] 范文亮, 韩杨, 周擎宇, 李正良. 概率信息不完全系统的统计矩估计方法[J]. 工程力学, 2017, 34(2): 34-41.
[2] 钟轶峰, 周小平, 张亮亮. 压电圆柱棒基于变分渐近法的广义Timoshenko模型[J]. 工程力学, 2014, 31(10): 14-20.
[3] 蒋友宝;刘 扬;张建仁. 基于失效边界特性的体系可靠度计算方法[J]. 工程力学, 2010, 27(8): 77-082.
[4] 李 杰;阎 启. 结构随机动力激励的物理模型:以脉动风速为例[J]. 工程力学, 2009, 26(增刊Ⅱ): 175-183,.
[5] 张科锋;汪树玉. 敏度分析与修正降维法[J]. 工程力学, 1989, 6(3): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖映雄;周志阳;舒 适. 几类典型网格下三维弹性问题的代数多层网格法[J]. 工程力学, 2011, 28(6): 11 -018 .
[2] 王晓峰;杨庆山. 基于Timoshenko梁理论的薄壁梁弯扭耦合分析[J]. 工程力学, 2008, 25(5): 0 -015, .
[3] 鞠 伟;岑 松;傅向荣;龙驭球. 基于哈密顿解法的厚板边界效应典型算例分析[J]. 工程力学, 2008, 25(2): 0 -008 .
[4] 刘春梅, 肖映雄, 舒适, 钟柳强. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学, 2012, 29(9): 60 -67,91 .
[5] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[6] 聂建国,王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59 -67 .
[7] 姜忻良 张崇祥 姜南 罗兰芳. 设备-结构-土体系振动台实时子结构试验方法探讨[J]. 工程力学, 0, (): 0 .
[8] 袁全, 袁驷, 李易, 闫维明, 邢沁妍. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018, 35(8): 9 -13 .
[9] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107 -112 .
[10] 郑欣, 刘宇斌, 陈璞, 沈峰, 张圣君, 傅向荣. 基于弯扭耦合理论的颤振频率计算方法[J]. 工程力学, 2018, 35(S1): 1 -5,12 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日