工程力学 ›› 2018, Vol. 35 ›› Issue (8): 21-29.doi: 10.6052/j.issn.1000-4750.2017.07.0531

• 土木工程学科 • 上一篇    下一篇

适用于高层隔震结构的地震动强度指标研究

杨参天1,2, 解琳琳1,2, 李爱群1,2,3, 曾德民1,2, 刘立德1,2   

  1. 1. 北京未来城市设计高精尖创新中心, 北京 100044;
    2. 北京建筑大学土木与交通工程学院, 北京 100044;
    3. 东南大学土木工程学院, 南京 210096
  • 收稿日期:2017-07-09 修回日期:2017-11-28 出版日期:2018-08-29 发布日期:2018-08-29
  • 通讯作者: 解琳琳(1986-),男,江苏南通人,讲师,博士,主要从事高层和超高层抗震设计研究(E-mail:xielinlin@bucea.edu.cn). E-mail:xielinlin@bucea.edu.cn
  • 作者简介:杨参天(1993-),男,山西晋城人,硕士生,主要从事高层隔震结构研究(E-mail:yangcantian@outlook.com);李爱群(1962-),男,湖南耒阳人,教授,博士,博导,主要从事工程防灾减灾研究(E-mail:liaiqun@bucea.edu.cn);曾德民(1970-),男,吉林公主岭人,研究员,博士,主要从事结构隔震减震技术及城市防灾减灾研究(E-mail:zengdemin@vip.163.com);刘立德(1993-),男,吉林四平人,硕士生,主要从事高层隔震结构研究(E-mail:lukixwr@sina.com).
  • 基金资助:
    国家重点研发计划课题项目(2017YFC0703602);北京未来城市设计高精尖创新中心(UDC2016030200);博士启动项目(KYJJ2017005)

INTENSITY MEASURES FOR SEISMICALLY ISOLATED TALL BUILDINGS

YANG Can-tian1,2, XIE Lin-lin1,2, LI Ai-qun1,2,3, ZENG De-min1,2, LIU Li-de1,2   

  1. 1. Beijing advanced innovation center for future urban design, Beijing 100044, China;
    2. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    3. School of Civil Engineering, Southeast University, Nanjing 210096, China
  • Received:2017-07-09 Revised:2017-11-28 Online:2018-08-29 Published:2018-08-29

摘要: 近年来,功能可恢复已逐渐成为地震工程领域的研究热点。隔震技术是实现高烈度区高层结构震后功能可恢复的重要手段。地震作用下,关键工程需求参数(主要包括上部结构最大层间位移角MIDR、顶层最大位移MRD和楼面最大加速度MFA以及最大隔震层位移MBD)是评价该类结构是否满足功能可恢复需求的重要指标。合理的地震动强度指标是预测结构响应和评价结构地震功能可恢复能力的重要基础,该研究基于4个高层隔震案例,考虑结构体系、高度、隔震方案、屈重比和地震动类型等因素的影响,评估了25个地震动强度指标与高层隔震结构关键工程需求参数的相关性。识别了与各关键工程需求参数相关性最佳的地震动强度指标,明确了综合平衡性最佳的地震动强度指标,并讨论了各因素的影响效应。该研究成果可为基于功能可恢复的高层隔震结构抗震性能的评估和设计方法的提出提供参考。

关键词: 高层隔震结构, 地震动强度指标, 工程需求参数, 相关性评价, 综合平衡性

Abstract: Research on the seismic resilient structures has become a critical issue in earthquake engineering recently. The seismic isolation technology is an important method to achieve seismic resilience for tall buildings located in high seismic regions. Critical engineering demand parameters (EDPs), including maximum inter-story drift ratio (MIDR), maximum roof displacement (MRD), maximum floor acceleration (MFA) and maximum bearing displacement (MBD), are the essential indexes for the resilience assessment of seismically isolated tall buildings. To predict the abovementioned seismic responses and evaluate the seismic resilience of a seismically isolated tall building, an impartial intensity measure (IM) is required. Various factors, including the structural systems, structural heights, seismically isolated schemes, yield ratio of the isolation system and types of ground motions, are considered to yield impartial intensity measures for seismically isolated tall buildings based on 4 real engineering practices. The correlation between 25 IMs and the critical EDPs are evaluated. The IMs that has the best correlation with each EDP are identified. The IM which achieves the balance between the correlations with 4 EDPs is further identified. In addition, the influences of various factors are investigated. The research outcome will assist in providing a useful reference for resilience-based seismic design and evaluation methods of seismically isolated tall buildings.

Key words: seismically isolated tall building, intensity measures, engineering demand parameters, correlation, comprehensive balance

中图分类号: 

  • TU352.1+2
[1] Bojórquez E, Iervolino I, Reyes-Salazar A, et al. Comparing vector-valued intensity measures for fragility analysis of steel frames in the case of narrow-band ground motions[J]. Engineering Structures, 2012, 45:472-480.
[2] 陈健云, 李静, 韩进财, 等. 地震动强度指标与框架结构响应的相关性研究[J]. 振动与冲击, 2017, 36(3):105-112, 144. Chen Jianyun, Han Jincai, Li Jing, et al. Correlation between ground motion intensity measures and seismic response of frame structure[J]. Journal of Vibration and Shock, 2017, 36(3):105-112, 144. (in Chinese)
[3] Su Ningfen, Lu Xilin, Zhou Yin, et al. Estimating the peak structural response of high-rise structures using spectral value-based intensity measures[J]. Structural Design of Tall & Special Buildings, 2017, 26:e1356., doi:10.1002/tal.1356.
[4] Zhang Yantai, He Zheng, Lu Wengao, et al. A spectral-acceleration-based linear combination-type earthquake intensity measure for high-rise buildings[J]. Journal of Earthquake Engineering, 2017, doi:10.1080/13632469.2017.1286624.
[5] 张艺欣, 郑山锁, 秦卿, 等. 适用于高层RC结构的谱加速度指标分析[J]. 工程力学, 2017, 34(10):149-157. Zhang Yixin, Zheng Shansuo, Qin Qing, et. al. Analysis of spectra acceleration as an intensity measure adapted to RC high-rise buildings[J]. Engineering Mechanics, 2017, 34(10):149-157. (in Chinese)
[6] 刘彦辉, 谭平, 周福霖, 等. 高层框架-剪力墙隔震结构地震响应研究[J]. 工程力学, 2015, 32(3):134-139, 224. Liu Yanhui, Tan Ping, Zhou Fulin, et al. Study of seismic response in isolated high-rise frame-shear wall structures during earthquakes[J]. Engineering Mechanics, 2015, 32(3):134-139, 224. (in Chinese)
[7] Lu Xiao, Ye Lieping, Lu Xinzheng, et al. An improved ground motion intensity measure for super high-rise buildings[J]. Science China Technological Sciences, 2013, 56(6):1525-1533.
[8] 卢啸, 陆新征, 叶列平, 等. 适用于超高层建筑的改进地震动强度指标[J]. 建筑结构学报, 2014, 35(2):15-21. Lu Xiao, Lu Xinzheng, Ye Lieping, et al. Development of an improved ground motion intensity measeure for super high-rese buildings[J]. Journal of Building Structures, 2014, 35(2):15-21. (in Chinese)
[9] Mollaioli F, Lucchini A, Cheng Yin, et al. Intensity measures for the seismic response prediction of base-isolated buildings[J]. Bulletin of Earthquake Engineering, 2013, 11(5):1841-1866.
[10] 韩淼, 段燕玲, 孙欢, 等. 近断层地震动特征参数对基础隔震结构地震响应的影响分析[J]. 土木工程学报,2013, 46(6):8-13. Han Miao, Duan Yanling, Sun Huan, et al. Influence o characteristics parameters of near-fault ground motions on the seismic responses of base-isolated structures[J]. China Civil Engineering Jorunal, 2013, 46(6):8-13. (in Chinese)
[11] Özgür Avşar, Özdemir G. Response of seismic isolated bridges in relation to intensity measures of ordinary and pulse-like ground motions[J]. Journal of Bridge Engineering, 2013, 18(3):250-260.
[12] 刘文光, 刘阳, 何文福, 等. 隔震结构动力弹塑性分析地震记录选择的波谱分类法研究[J]. 建筑结构学报, 2015, 36(7):106-114. Liu Wenguang, Liu Yang, He Wenfu, et al. Wave spectrum classification method of seismic records selection for isolated structure dynamic elasto-plastic analysis[J]. Journal of Building Structures, 2015, 36(7):106-114. (in Chinese)
[13] 耿方方, 丁幼亮, 谢辉, 等. 近断层地震动作用下长周期结构的地震动强度指标[J]. 东南大学学报(自然科学版), 2013, 43(1):203-208. Geng Fangfang, Ding Youliang, Xie Hui, et al. Ground motion intensity indices or long period structures subjected to near-fault ground motion[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(1):203-208. (in Chinese)
[14] 杜永峰, 徐天妮, 洪娜. 不同震源机制的近断层脉冲型地震动频谱特性及强度指标研究[J]. 土木工程学报, 2017, 50(5):81-87. Du Yongfeng, Xu Tianni, Hong Na. Spectral and intensity indices of near-fault ground motions based on different focal mechanisms[J]. China Civil Engineering Journal, 2017, 50(5):81-87. (in Chinese)
[15] 杨迪雄, 赵岩, 李刚, 等. 近断层地震动运动特征对长周期结构地震响应的影响分析[J]. 防灾减灾工程学报, 2007, 27(2):133-140. Yang Dixiong, Zhao Yan, Li Gang, et al. Influence analysis of motion characteristics of near-fault ground motions on seismic responses of long-period structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(2):133-140. (in Chinese)
[16] 田洁, 张俊发, 刘云贺, 等. 铅芯橡胶支座基础隔震体系参数优化配置研究[J]. 世界地震工程, 2003, 19(1):158-163. Tian Jie, Zhang Junfa, Liu Yunhe, et al. Research on optimum parameters of base-isolated buildings with lead laminated rubber bearings[J]. World Earthquake Engineering, 2003, 19(1):158-163. (in Chinese)
[17] 杜东升, 苗启松, 梁羽, 等. 老旧砌体房屋加固及顶部加层隔震的理论分析及振动台试验[J]. 土木工程学报, 2013, 46(8):45-54. Du Dongsheng, Miao Qisong, Liang Yu, et al. Theoretical analysis and shaking table tests off old masonry structure reinforced by external frames with added stories on the top using seismic isolation technology[J]. China Civil Engineering Journal, 2013, 46(8):45-54. (in Chinese)
[18] Providakis C P. Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations[J]. Engineering Structures, 2008, 30(5):1187-1198.
[19] Li Aiqun, Yang Cantian, Xie Linlin, et al. Research on the rational yield ratio of isolation system and its application to the design of seismically isolated reinforced concrete frame-core tube tall buildings[J]. Applied Sciences, 2017, 7(11):1191. doi:10.3390/app7111191.
[20] Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4):526-533.
[21] Brian Chiou, Robert Darragh, Nick Gregor, et al. NGA project strong-motion database[J]. Earthquake Spectra, 2008, 24(1):23-44.
[22] 王维, 李爱群. 最小地震剪力系数对隔震结构抗震性能的影响[J]. 建筑结构学报, 2017, 38(1):99-105. Wang Wei, Li Aiqun. Influence of minimum earthquake shear force coefficient on seismic performance of isolation structures[J]. Journal of Building Structures, 2017, 38(1):99-105. (in Chinese)
[23] 熊琛, 许镇, 陆新征, 等. 适用于城市高层建筑群的震害预测模型研究[J]. 工程力学, 2016, 33(11):49-58. Xiong Chen, Xu Zhen, Lu Xinzheng, et al. A urban seismic damage analysis model for tall building groups[J]. Engineering Mechanics, 2016, 33(11):49-58. (in Chinese)
[24] Lu Xinzheng, Xie Linlin, Guan Hong, et al. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees[J]. Finite Element in Analysis & Design, 2015, 98:14-25.
[25] Lu Xiao, Lu Xinzheng, Guan Hong, et al. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5):705-723.
[26] Computers and Structures Inc. Berkeley. ETABS[CP]. United States, 2003.
[27] 叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4):9-22. Ye Lieping, Ma Qianli, Miao Zhiwei. Study on earthquake intensities for seismic analysis of structures[J]. Journal of Earthquake Engineering and Engineering Vibrabion, 2009, 29(4):9-22. (in Chinese)
[28] Housner G W. Spectrum intensities of strong motion earthquakes[C]. Proceedings of symposium of earthquake and blast effects on structures, EERI, Los Angeles, California, 1952:21-36.
[1] 张艺欣, 郑山锁, 秦卿, 董方园, 李强强, 周炎. 适用于高层RC结构的谱加速度指标分析[J]. 工程力学, 2017, 34(10): 149-157.
[2] 韩建平;周 伟;李 慧;. 基于汶川地震数据的地震动强度指标与中长周期SDOF体系最大响应相关性[J]. 工程力学, 2011, 28(10): 185-196.
[3] 王焕定;付伟庆;刘文光;于德湖;程树良. 规则隔震结构等效简化模型的研究[J]. 工程力学, 2006, 23(8): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[3] 戈新生;陈立群;刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63 -68 .
[4] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[5] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[6] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[7] 杨璞;刘应华;袁鸿雁;岑章志. 计算结构极限载荷的修正弹性补偿法[J]. 工程力学, 2006, 23(3): 21 -26 .
[8] 罗冠炜;张艳龙;谢建华. 多自由度含间隙振动系统周期运动的二重Hopf分岔[J]. 工程力学, 2006, 23(3): 37 -43,6 .
[9] 李庆祥;孙炳楠;. 均匀流场中小曲率薄膜的气动稳定性分析[J]. 工程力学, 2006, 23(4): 39 -44,5 .
[10] 李雷;谢水生;黄国杰. 应变梯度塑性理论下超薄梁弯曲中尺度效应的数值研究[J]. 工程力学, 2006, 23(3): 44 -48 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日