工程力学 ›› 2018, Vol. 35 ›› Issue (S1): 359-364.doi: 10.6052/j.issn.1000-4750.2017.06.S053

• 其他工程学科 • 上一篇    

夏威夷ALEUTIAN海啸的NEOWAVES数值模拟

翟金金, 董胜   

  1. 中国海洋大学海洋工程系, 山东, 青岛 266100
  • 收稿日期:2017-06-01 修回日期:2017-12-27 出版日期:2018-06-30 发布日期:2018-07-11
  • 通讯作者: 董胜(1968-),男,山东青岛人,教授,博士,博导,从事海洋工程环境及其与结构相互作用研究(E-mail:dongsh@ouc.edu.cn). E-mail:dongsh@ouc.edu.cn
  • 作者简介:翟金金(1990-),女,河南商丘人,博士生,主要从事海岸工程及其与海洋环境的相互作用研究(E-mail:zhaijinjin.good@163.com).
  • 基金资助:
    国家自然科学基金委员会-山东省人民政府联合基金项目(U1706226);国家自然科学基金项目(51479183)

Simulation of ALEUTIAN tsunami by NEOWAVES model

ZHAI Jin-jin, DONG Sheng   

  1. Department of Ocean Engineering, Ocean University of China, Qingdao, Shandong 266100, China
  • Received:2017-06-01 Revised:2017-12-27 Online:2018-06-30 Published:2018-07-11

摘要: 夏威夷群岛因其特殊的地理位置及周围海底地形,长期遭受太平洋地震带和近岸地震带产生的海啸影响,如何准确地确定夏威夷群岛沿岸的海啸爬高对海洋结构设计具有重大意义。基于非线性浅水方程建立的NEOWAVES模型包含非线性静水压力项和垂向动量方程,用于描述海底的动态变形和弱频散波的传播过程,它能够模拟海啸的整个生命过程,包括产生、传播、爬高和淹没。以对夏威夷地区影响比较严重的1946年Aleutian历史海啸为例,采用NEOWAVES模型模拟其产生、传播以及在夏威夷欧胡岛沿岸地带的爬高。计算结果表明,NEOWAVES模型计算得到的欧胡岛沿岸(北部、西部和南部)的爬高与历史记录的爬高数据接近,验证了NEOWAVES模型的合理性和可靠性,同时也为夏威夷地区海洋结构物的设计提供合理的参考意见。

关键词: 地震海啸, 数值模拟, NEOWAVES模型, 夏威夷欧胡岛, 海啸波高, 海啸波振幅

Abstract: Hawaiian Islands have long been impacted by tsunamis caused by the Pacific seismic zone and near-field seismic zone, largely attributed to its special geographical location and its offshore geography. How to accurately calculate the tsunami runup along the coast of Hawaiian Islands is of great significance on the design of marine structures. Based on the nonlinear shallow water equation, NEOWAVES is a shock-capturing, dispersive wave model for tsunami generation, basin-wide evolution, and run-up. It utilizes non-hydrostatic pressure and vertical velocity terms to describe dispersion and time-varying seafloor deformation. In this study, the NEOWAVES model is applied to the simulation of generation, propagation and runup of the 1946a Aleutian historical tsunami at Oahu Island. The result shows that the tsunami runup data at Oahu Island (North, West and South) calculated by NEOWAES model are similar to the historical recorded runup data, which proves that the NEOWAVES is rational and reliable to simulate tsunami, and offers reasonable reference on design of marine structure.

Key words: earthquake tsunami, numerical simulation, NEOWAVES model, Oahu Island at Hawaii, tsunami runup, tsunami wave amplitude

中图分类号: 

  • P731.25
[1] Dawson A G, Stewart I. Tsunami deposits in the geo-logical record[J]. Sedimentary Geology, 2007, 200(3/4):166-183.
[2] 于福江, 原野, 赵联大, 等. 2010年2月27日智利8.8级地震海啸对我国影响分析[J]. 科学通报, 2011, 56(3):239-246. Yu Fujiang, Yuan Ye, Zhao Lianda, et al. Evaluation of potential hazards from teletsunami in China:Tidal observation of a teletsunami generated by the Chile 8.8 Mw earthquake. Chinese Sci Bull, 2011, 56(3):239-246. (in Chinese)
[3] Ammon C J, Ji C, Thio H K, et al. Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 2005, 308(5725):1133-1139.
[4] 王培涛, 于福江, 原野, 等. 海底地震有限断层破裂模型对近场海啸数值预报的影响[J]. 地球物理学报, 2016, 59(3):1030-1045. Wang Peitao, Yu Fujiang, Yuan Ye, et al. Effects of finite fault rupture models of submarine earthquake on numerical forecasting of near-field tsunami[J]. Chinese Journal of Geophysics, 2016, 59(3):1030-1045. (in Chinese)
[5] Liu P L F, Cho Y S, Yoon S B, et al. Numerical Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii[M]//Tsuchiya Y, Shuto N, eds Tsunami:Progress in Prediction, Disaster Prevention and Warning. Advances in Natural & Technological Hazards Research, 1995, 4:99-115.
[6] Wang X M, Liu P L F. Numerical Simulations of the 2004 Indian ocean tsunami-coastal effects[J]. Journal of Earthquake & Tsunami, 2007, 1(3):273-297.
[7] Titov V V, Synolakis C E. Modeling of Breaking and Nonbreaking Long-Wave Evolution and Runup Using VTCS-2[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1995, 121(6):308-317.
[8] Titov V V, Gonza'lez F I. Implementation and testing of the method of splitting tsunami (MOST) model[R]. NOAA Seattle, Washington, USA:U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories (ERL PMEL-112), NOAA/Pacific Marine environmental Laboratory, 1997:1-11.
[9] Tang L, Titov V V, Bernard E N, et al. Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements[J]. Journal of Geophysical Research Oceans, 2012, 117(C8):72-82.
[10] Imamura F. Review of tsunami simulation with a finite difference method[M]//Liu P L F, eds Long-wave Runup Models. Friday Harbor, USA:World Scientific Publishing, 1995:25-42.
[11] Shuto N. Numerical simulation of tsunamis - Its present and near future[J]. Natural Hazards, 1991, 4(2/3):171-191.
[12] Burwell D, Tolkova E, Chawla A. Diffusion and dispersion characterization of a numerical tsunami model[J]. Journal of Shenyang Agricultural University, 2007, 19(5):10-30.
[13] Grilli S T, Ioualalen M, Asavanant J, et al. Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2007, 133(6):414-428.
[14] Wei G, Kirby J T. Time-dependent numerical code for extended boussinesq equations[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1995, 121(5):251-261.
[15] Watts P, Grilli S T, Kirby J T, et al. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model[J]. Natural Hazards & Earth System Science, 2003, 3(5):391-402.
[16] Watts P, Imamura F, Grilli S T. Comparing model simulations of three benchmark tsunami generation cases[J]. Science of Tsunami Hazards, 2000, 18(2):107-124.
[17] Grilli S T, Watts P. Modeling of waves generated by a moving submerged body. Applications to underwater landslides[J]. Engineering Analysis with Boundary Elements, 1999, 23(8):645-656.
[18] Watts P. Tsunami Features of Solid Block Underwater Landslides[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2014, 126(3):144-152.
[19] Roddis W M K. Community Workshop on Computational Simulation and Visualization Environment for the Network for Earthquake Engineering Simulation (NEES)[R]. Davis, California, USA:University of California, 2003:10-15.
[20] Yamazaki Y, Cheung K F, Kowalik Z. Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up[J]. International Journal for Numerical Methods in Fluids, 2011, 67(67):2081-2107.
[21] Yamazaki Y, Kowalik Z, Cheung K F. Depth-integrated, non-hydrostatic model for wave breaking and runup[J]. International Journal for Numerical Methods in Fluids, 2009, 61(5):473-497.
[22] Cheung K F, And Y B, Yamazaki Y. Surges around the Hawaiian Islands from the 2011 Tohoku Tsunami[J]. Journal of Geophysical Research Oceans, 2013, 118(10):5703-5719.
[23] Walker D A. Regional tsunami evacuations for the state of hawai'i:a feasibility study based on historical runup[J] data. Science of Tsunami Hazards, 2004, 22(1):3-22.
[24] Cheung K F. Hawaii Tsunami Mapping Project:Data Sources, Procedures, and Products - Final Report for Hawaii Inundation Maps (FOUO)[R]. Honolulu, Hawaii, USA:University of Hawaii, 2010:6-20.
[1] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[2] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[3] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[4] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
[5] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[6] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249-256.
[7] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[8] 潘晓军, 张燕平, 陈曦, 高伟, 樊剑. 水平基底上薄膜流体的数学模型及其数值模拟[J]. 工程力学, 2018, 35(6): 24-32,41.
[9] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[10] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[11] 田甜, 雷洋, 齐法琳, 黎国清. 不同时速列车振动荷载下衬砌拱圈振动响应传递规律[J]. 工程力学, 2018, 35(5): 143-151.
[12] 韩艳, 李凯, 陈浩, 蔡春声, 董国朝. 桥面典型车辆气动特性及车辆间挡风效应的数值模拟研究[J]. 工程力学, 2018, 35(4): 124-134,185.
[13] 樊鹏玄, 陈务军, 赵兵. 盘绕式伸展臂收纳过程理论分析与数值模拟[J]. 工程力学, 2018, 35(3): 249-256.
[14] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[15] 姚志勇, 张楠, 夏禾, 李小珍. 基于重叠网格的三维车桥系统气动特性研究[J]. 工程力学, 2018, 35(2): 38-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[2] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[3] 王小雯, 张建民. 随机波浪作用下饱和砂质海床弹塑性动力响应规律[J]. 工程力学, 2018, 35(6): 240 -248,256 .
[4] 焦春硕, 王浩霖, 董胜. 深海重型设备浮力辅助安装模拟研究[J]. 工程力学, 2018, 35(S1): 344 -348 .
[5] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249 -256 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日