工程力学 ›› 2018, Vol. 35 ›› Issue (11): 99-105.doi: 10.6052/j.issn.1000-4750.2017.06.0511

• 土木工程学科 • 上一篇    下一篇

结构抗爆防护措施经济决策模型

刘春霖1,2, 范俊余3, 陈昭晖4   

  1. 1. 清华大学土木水利学院, 北京, 100084;
    2. 新加坡凯斯防护科技有限公司, 新加坡, 311125;
    3. 陆军工程大学国防工程学院, 南京, 210007;
    4. 福州大学土木工程学院, 福州, 350116
  • 收稿日期:2017-06-30 修回日期:2018-01-31 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 刘春霖(1968-),男,福建人,教授,博士,主要从事安全风险评估和防护设计等研究(Email:liu.chun.lin@kcpt.com.sg). E-mail:liu.chun.lin@kcpt.com.sg
  • 作者简介:范俊余(1978-),女,山东人,副教授,博士,主要从事结构抗爆研究(E-mail:fjy7361@sina.com);陈昭晖(1982-),男,福建人,副研究员,博士,主要从事结构动力学与控制研究(E-mail:zhchen@fzu.edu.cn).
  • 基金资助:
    KCPT科研基金项目(KCPTRD2008-001);国家自然科学基金项目(51608128)

ECONOMIC DECISION MODEL FOR BLAST RESISTANT PROTECTION MEASURES OF STRUCTURES

LIU Chun-lin1,2, FAN Jun-yu3, CHEN Zhao-hui4   

  1. 1. School of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. K & C Protective Technologies Pte Ltd, Singapore, 311125, China;
    3. College of Defense Engineering, Army Engineering University, Nanjing 210007, China;
    4. College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
  • Received:2017-06-30 Revised:2018-01-31 Online:2018-11-07 Published:2018-11-07

摘要: 为给结构抗恐怖爆炸袭击防护提供经济决策支持,达到防护性能和经济性的最佳平衡,该文首先在分析土地费用及抗爆防护措施费用与安全距离之间关系的基础上,建立结构抗爆防护措施的经济决策模型。然后,基于实际工程抗爆防护措施的费用数据,采用信赖域优化算法确定了预测模型的关键参数。最后,以实际工程为例,对所建立的预测模型进行有效性验证,结果表明,所建立的预测模型可以简便、有效地进行结构抗爆防护措施的经济决策分析,从而为抗爆安全风险评估及管理决策提供依据。

关键词: 大型公共设施, 安全风险评估, 抗爆, 防护措施, 经济决策模型

Abstract: To provide economic decision support for structural protection against blasting terror attacks, and to achieve the optimal balance between protection performance and cost, an economic decision model for blast-resistant protection measures of structures was established in terms of the relationship between cost of land and blast protection measures and the standoff distance. Based on practical engineering data of protection costs for anti-blasting, key parameters of the prediction model were determined by the trust-region optimization algorithm. The effectiveness of the established model was verified with novel project data. The results show that the prediction model can be used in the economic analysis for the blast resistant protection measures in a simple and effective manner, which provides evidences for blast security risk assessment and management decision.

Key words: mega public infrastructure, security risk assessment, blast resistance, protection measures, economic decision model

中图分类号: 

  • X915.4
[1] Stewart M G. Cost effectiveness of risk mitigation strategies for protection of buildings against terrorist attack[J]. Journal of Performance of Constructed Facilities, 2008, 22(2):115-120.
[2] 李大义. 在服桥梁加固技术经济分析模型的研究[J]. 黑龙江交通科技, 2009, 32(2):91-94. Lin Dayi. Study on economic analysis model for in-service bridge strengthening technique[J]. Communications Science and Technology Heilongjiang, 2009, 32(2):91-94. (in Chinese)
[3] 张宇辉. 既有桥梁改造方案经济分析模型的构建[J]. 北方交通, 2010, 3:77-80. Zhang Yuhui. The building of economic analysis model for reconstruction plan of the existing bridges[J]. Northern Communications, 2010, 3:77-80. (in Chinese)
[4] Cutfield M R, Ryan K L, Ma Q T. A case study cost-benefit analysis on the use of base isolation in a low-rise office building[C]//Earthquake Engineering Research Institute. Proceedings of the 10th U.S. National Conference on Earthquake Engineering 2014(10NCEE):Frontiers of Earthquake Engineering. New York:Curran Associates, Inc., 2014:1861-1879.
[5] 方建, 李梦婕, 王静爱, 等. 全球暴雨洪水灾害风险评估与制图[J]. 自然灾害学报, 2015, 24(1):1-8. Fang Jian, Li Mengjie, Wang Jingai, et al. Assessment and mapping of global fluvial flood risk[J]. Journal of Natural Disasters, 2015, 24(1):1-8. (in Chinese)
[6] 黄超, 梁兴文. FRC框架结构地震风险评估的简化方法[J]. 工程力学, 2017, 34(7):117-125. Huang Chao, Liang Xingwen. A simplified method for evaluation the seismic risk of FRC frame structures[J]. Engineering Mechanics, 2017, 34(7):117-125. (in Chinesee)
[7] Stewart M G. Risk acceptability and cost-effectiveness of protective measures against terrorist threats to built infrastructure considering multiple threat scenarios[J]. Transactions of Tianjin University, 2008, 14(5):313-317.
[8] Stewart M G. Life-safety risks and optimisation of protective measures against terrorist threats to infrastructure[J]. Structure and Infrastructure Engineering, 2011, 7(6):431-440.
[9] Stewart M G, Mueller J. Terrorism risks and cost-benefit analysis of aviation security[J]. Risk Analysis, 2013, 33(5):893-908.
[10] Stewart M G, Mueller J. Cost-benefit analysis of airport security:Are airports too safe[J]. Journal of Air Transport Management, 2014, 35:19-28.
[11] Dai J, Hu R, Chen J, et al. Benefit-cost analysis of security systems for multiple protected assets based on information entropy[J]. Entropy, 2012, 14(3):571-580.
[12] Heatwole N. Cost-effectiveness of vehicle barriers and setback distance for protecting buildings from vehicle bomb attack[C]//Smith C L, Paulos T. Proceedings of the Probabilistic Safety Assessment and Management (PSAM) 12 Conference. USA:CreateSpace Publishing, 2014:503-1-503-12.
[13] ElSayed M, Campidelli M, El-Dakhakhni W, et al. Simplified framework for blast-risk-based cost-benefit analysis for reinforced concrete-block buildings[J]. Journal of Performance of Constructed Facilities, 2016, 30(4):04015077-1-04015077-13.
[14] Stewart M G, Netherton M D, Rosowsky D V. Terrorism risks and blast damage to built infrastructure[J]. Natural Hazards Review, 2006, 7(3):114-122.
[15] Stewart M G, Netherton M D. Security risks and probabilistic risk assessment of glazing subject to explosive blast loading[J]. Reliability Engineering & System Safety, 2008, 93(4):627-638.
[16] Liu C L, Palermo D, Lok T S, et al. An analytical cost methodology in protective solution[C]//Wu C, Lok T S. Proceedings of the 8th International Conference on Shock & Impact Loads on Structures. Australia:University of Adelaide, Singapore:CI-Premier, 2009:379-388.
[17] Kingery C N, Bulmash G. Air blast parameters from TNT spherical air burst and hemispherical burst[R]. Aberdeen Proving Ground, Maryland:US Army Armament and Development Center, Ballistic Research Laboratory, 1984:1-51.
[18] 张建亮, 夏志成, 周竞洋, 等. 密闭空间内三种防爆隔墙的减爆吸能效应分析[J]. 工程力学, 2017, 34(增刊):314-319. Zhang Jianliang, Xia Zhicheng, Zhou Jingyang, et al. Analysis on the explosion isolation and absorption effect of three kinds of explosion proof walls in airtight space[J]. Engineering Mechanics, 2017, 34(Suppl):314-319. (in Chinese)
[19] Conn A R, Gould N I M, Toint P L. Trust-region methods[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2000.
[1] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27-35,74.
[2] 张春晓, 何翔, 刘国权, 王世合, 李磊, 李砚召. 泡沫陶瓷球壳与高黏弹沥青热压复合板材研制及其抗爆性能试验研究[J]. 工程力学, 2017, 34(增刊): 320-325.
[3] 徐强, 曹阳, 陈健云. 重力坝水下接触爆炸的数值分析[J]. 工程力学, 2017, 34(6): 137-145.
[4] 陈万祥, 郭志昆, 邹慧辉, 张涛. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究[J]. 工程力学, 2017, 34(1): 180-191.
[5] 郭樟根, 曹双寅, 王安宝, 李悯粟, 孙伟民. 化爆作用下FRP加固RC板的试验研究及动力响应分析[J]. 工程力学, 2016, 33(3): 120-127.
[6] 于润清, 方秦, 陈力, 颜海春. 建筑结构构件基于性能的抗爆设计方法[J]. 工程力学, 2016, 33(11): 75-83.
[7] 董彦鹏,吕振华. 基于蜂窝材料结构相似有限元模型的夹层结构抗爆炸冲击特性优化设计分析[J]. 工程力学, 2013, 30(7): 248-254.
[8] 温华兵;张 健;尹 群;黄泉水. 水下爆炸船舱冲击响应时频特征的小波包分析[J]. 工程力学, 2008, 25(6): 0-203.
[9] 王宇新;陈 震;张洪武;孙 明. 多层抗爆结构冲击响应无网格MPM法分析[J]. 工程力学, 2007, 24(12): 0-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[2] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[3] 郭薇薇;夏禾;徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006, 23(2): 103 -110 .
[4] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
[5] 贺瑞;秦权. 产生时程分析用的高质量地面运动时程的新方法[J]. 工程力学, 2006, 23(8): 12 -18 .
[6] 顾明;叶丰. 高层建筑风致响应的简化分析方法[J]. 工程力学, 2006, 23(8): 57 -61,4 .
[7] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[8] 许福友;陈艾荣. 平板颤振导数的参数弹性研究[J]. 工程力学, 2006, 23(7): 60 -64 .
[9] 曹树谦;;陈予恕;. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68 -079 .
[10] 陈伟球;严 蔚. 混凝土结构服役智能化的若干研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ): 91 -105 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日