工程力学 ›› 2018, Vol. 35 ›› Issue (11): 115-124.doi: 10.6052/j.issn.1000-4750.2017.06.0479

• 土木工程学科 • 上一篇    下一篇

锈蚀钢筋混凝土梁抗剪承载力计算的概率模型

余波1,2,3, 陈冰1,4   

  1. 1. 广西大学土木建筑工程学院, 南宁 530004;
    2. 广西大学工程防灾与结构安全教育部重点实验室, 南宁 530004;
    3. 广西大学广西防灾减灾与工程安全重点实验室, 南宁 530004;
    4. 成都基准方中建筑设计有限公司, 成都 610000
  • 收稿日期:2017-06-19 修回日期:2017-09-27 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 余波(1982-),男,四川人,教授,工学博士,主要从事混凝土结构耐久性、结构可靠度与抗震性能分析研究(E-mail:gxuyubo@gxu.edu.cn). E-mail:gxuyubo@gxu.edu.cn
  • 作者简介:陈冰(1990-),男,江西人,工学硕士,主要从事钢筋混凝土结构抗震性能分析研究(E-mail:cblucky@foxmail.com).
  • 基金资助:
    国家自然科学基金重点项目(51738004);国家自然科学基金项目(51368006,51478125,51668008)

PROBABILISTIC MODEL FOR SHEAR STRENGTH OF CORRODED REINFORCED CONCRETE BEAMS

YU Bo1,2,3, CHEN Bing1,4   

  1. 1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China;
    2. Key Laboratory of Disaster Prevention and Structural Safety of China Ministry of Education, Guangxi University, Nanning 530004, China;
    3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China;
    4. Chengdu Jizhunfangzhong Architectural Design Co., Ltd. Chengdu 610000, China
  • Received:2017-06-19 Revised:2017-09-27 Online:2018-11-07 Published:2018-11-07

摘要: 该文针对锈蚀钢筋混凝土(RC)梁抗剪承载力计算的传统确定性模型所存在的缺陷,研究建立了锈蚀RC梁抗剪承载力计算的概率模型。首先综合考虑钢筋锈蚀对箍筋屈服强度、配筋率、配箍率、临界斜裂缝倾角、梁有效抗剪截面积等重要因素的影响,结合修正压力场理论和考虑剪跨比影响的临界斜裂缝倾角模型,建立了锈蚀RC梁抗剪承载力计算的确定性模型;然后综合考虑客观不确定性和主观不确定性的影响,结合贝叶斯理论和马尔科夫链蒙特卡洛(MCMC)法,建立了锈蚀RC梁抗剪承载力计算的概率模型;最后通过与试验数据和传统确定性抗剪承载力计算模型的对比分析,验证了该概率模型的有效性和适用性。分析结果表明,所建立的概率模型不仅可以合理描述锈蚀RC梁抗剪承载力的概率分布特性,而且可以校准传统确定性抗剪承载力模型的计算精度和置信水平,具有良好的有效性和适用性。

关键词: 钢筋混凝土梁, 锈蚀, 抗剪承载力, 临界斜裂缝倾角, 概率模型, 修正压力场理论

Abstract: To overcome the disadvantage of traditional deterministic shear strength models for corroded reinforced concrete (RC) beams, a probabilistic model for shear strength of corroded RC beams was established. Based on the modified compression field theory (MCFT) and the critical diagonal crack angle model considering the influence of shear span ratios, a deterministic model for shear strength of corroded RC beam was established which takes into account the influence of reinforcement corrosion on various important factors such as the yield strength of transverse steel, stirrup reinforcement ratio, stirrup ratio, critical diagonal crack angle, sectional area of RC beam. Then a probabilistic model for the shear strength of corroded RC beam was developed by using the Bayesian theory and the Markov Chain Monte Carlo (MCMC) to take into account the influences of both epistemic and aleatory uncertainties. Finally, the applicability and efficiency of the proposed probabilistic model were validated by comparing it with the experimental data and traditional deterministic models. The analysis results show that the proposed probabilistic model is of good accuracy and applicability, because it can not only describe the probabilistic characteristics of shear strength of corroded RC beam, but also provide a benchmark to calibrate the confidence level and accuracy of traditional deterministic shear strength models.

Key words: reinforced concrete beam, corrosion, shear strength, critical diagonal crack angle, probabilistic model, modified compression field theory

中图分类号: 

  • TU375.1
[1] 霍艳华. 锈蚀钢筋混凝土简支梁受剪承载力研究[J]. 工业建筑, 2006, 36(增刊1):910-912. Huo Yanhua. Research on shear capacity of simply supported concrete beam with corroded reinforcement[J]. Industrial Construction, 2006, 36(Suppl1):910-912. (in Chinese)
[2] 中国建筑科学研究院. 钢筋混凝土结构设计与构造-85年设计规范背景资料汇编[M]. 北京:北京三环印刷厂, 1985:1-328. China Academy of Building Research. Design and construction of reinforced concrete structurescompilation of background data for 85 edition design codes[M]. Beijing:Beijing Sanhuan Printing Factory, 1985:1-328. (in Chinese)
[3] 赵羽习, 金伟良. 锈蚀箍筋混凝土梁的抗剪承载力分析[J]. 浙江大学学报, 2008, 42(1):19-24. Zhao Yuxi, Jin Weiliang. Analysis on shearing capacity of concrete beams with corroded stirrups[J]. Journal of Zhejiang University, 2008, 42(1):19-24. (in Chinese)
[4] Zararis P D. Shear compression failure in reinforced concrete deep beams[J]. Journal of Structural Engineering, 2003, 129(4):544-553.
[5] 李士彬, 张鑫, 贾留东, 等. 箍筋锈蚀钢筋混凝土梁的抗剪承载力分析[J]. 工程力学, 2011, 28(增刊1):60-63. Li Shibin, Zhang Xin, Jia Liudong, et al. Analysis for shear capacity of reinforced concrete beams with corrosion stirrups[J]. Engineering Mechanic, 2011, 28(Suppl1):60-63. (in Chinese)
[6] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[7] 余璠璟. 锈蚀钢筋混凝土梁斜截面性能试验研究和分析[D]. 南京:河海大学, 2005. Yu Fanjing. Experiment study and analysis on the diagonal shear property of corroded reinforced concrete beam[D]. Nanjng:Hohai University, 2005. (in Chinese)
[8] El-Sayed A K. Shear capacity assessment of reinforced concrete beams with corroded stirrups[J]. Construction & Building Materials, 2017, 134:176-184.
[9] ACI318-11, Building code requirements of structural concrete and commentary[S]. Farmington Hills:American Concrete Institute, 2011.
[10] 卢朝辉, 李海, 赵衍刚, 等. 锈蚀钢筋混凝土梁抗剪承载力预测经验模型[J]. 工程力学, 2015, 32(增刊1):261-270. Lu Zhaohui, Li Hai, Zhao Yangang, et al. An empirical model for shear strength prediction of corrode RC beams[J]. Engineering Mechanics, 2015, 32(Suppl1):261-270. (in Chinese)
[11] 余波, 陈冰, 唐睿楷, 等. 钢筋混凝土梁临界斜裂缝倾角计算的概率模型[J]. 计算力学学报, 2018, 35(1):98-104. Yu Bo, Chen Bing, Tang Ruikai, et al. Probabilistic model for critical crack angle of reinforced concrete beams[J]. 2018, 35(1):98-104. (in Chinese)
[12] Collins M P, Mitchell D. Prestressed concrete structures[M]. New Jersey:Prentice Hall Englewood Cliffs, 1991.
[13] Bentz E C, Collins M P. Development of the 2004 Canadian Standards Association (CSA) A23. 3 shear provisions for reinforced concrete[J]. Canadian Journal of Civil Engineering, 2006, 33(5):521-534.
[14] Bentz E C, Vecchio F J, Collins M P. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements[J]. ACI Structural Journal, 2006, 103(4):614-624.
[15] 魏巍巍, 贡金鑫. 钢筋混凝土构件基于修正压力场理论的受剪承载力计算[J]. 工程力学, 2011, 28(2):111-117. Wei Weiwei, Gong Jinxin. Shear strength of reinforced concrete members based on modified compression field theory[J]. Engineering Mechanic, 2011, 28(2):111-117. (in Chinese)
[16] 惠云玲, 林志伸. 锈蚀钢筋性能试验研究分析[J]. 工业建筑, 1997, 27(6):10-13. Hui Yunling, Lin Zhishen. Experimental study and analysis on the property of corroded rebar[J]. Industrial Construction, 1997, 27(6):10-13. (in Chinese)
[17] De Silva S, Mutsuyoshi H, Witchukreangkrai E. Evaluation of shear crack width in I-shaped prestressed reinforced concrete beams[J]. Journal of Advanced Concrete Technology, 2008, 6(3):443-458.
[18] Higginsc W C, Farrow W C, Potisuk T, et al. Shear capacity assessment of corrosion-damaged reinforced concrete beams, Final Report SPR 326[R]. Washington, DC, Oregon Department of Transportation Research Unit, 2003.
[19] Rodriguez J, Ortegal M, Casal J. Load carrying capacity of concrete structures with corroded reinforcement[J]. Construction & Building Materials, 1997, 11(4):239-248.
[20] Xia J, Jin W L, Li L Y. Shear performance of reinforced concrete beams with corroded stirrups in chloride environment[J]. Corrosion Science, 2011, 53(5):1794-1805.
[21] 李学田, 殷惠光. 锈蚀钢筋混凝土梁抗剪能力退化机理和预计模型[J]. 徐州工程学院学报, 2010, 25(4):58-63. Li Xuetian, Yin Huiguang. Degradation mechanism and predicting models of shearing capacity for corroded reinforced concrete beams[J]. Journal of Xuzhou Institute of Technology, 2010, 25(4):58-63. (in Chinese)
[22] 徐善华, 牛荻涛. 锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J]. 建筑结构学报, 2004, 25(5):98-104. Xu Shanhua, Niu Ditao. The shear behavior of corroded simply supported reinforced concrete beam[J]. Journal of Building Structures, 2004, 25(5):98-104. (in Chinese)).
[23] 霍艳华. 锈蚀钢筋混凝土简支梁受剪承载力研究[J]. 工业建筑, 2006, 36(S1):910-912. Huo Yanhua. Research on shear capacity of simply supported concrete beam with corroded reinforcement[J]. Industrial Construction, 2006, 36(S1):910-912. (in Chinese)
[24] Farrow W C. Tests of reinforced concrete beams with corrosion-damaged stirrups[J]. ACI Structural Journal, 2006, 103(1):133-141.
[25] 赵冰, 曾凡振. 锈蚀箍筋混凝土简支梁抗剪承载力模型及有限元分析[J]. 中国农村水利水电, 2010, 10:88-91. Zhao Bing, Zeng Fanzhen. The model and finite element analysis of shear capacity of simply supported concrete beam with corroded stirrup[J]. China Rural Water and Hydropower, 2010, 10:88-91. (in Chinese)
[26] 李冰. 局部区段锈蚀的钢筋混凝土梁抗剪承载力试验研究[D]. 上海:上海交通大学, 2011. Li Bing. Experimental study on the shear capacity of reinforced concrete beam with partial length corrosion[D]. Shanghai:Shanghai Jiao Tong University, 2011. (in Chinese)
[27] 柳世涛. 受腐蚀钢筋混凝土抗剪性能研究[D]. 长沙:中南大学, 2013. Liu Shitao. Research on shear behavior of corroded RC beams[D]. Changsha:Central South University, 2013. (in Chinese)
[28] 吕大刚, 宋鹏彦, 王光远. 考虑模型不确定性的结构可靠度分析方法[J]. 哈尔滨工业大学学报, 2011, 43(8):11-15. Lü Dagang, Song Pengyan, Wang Guangyuan. Reliability analysis methods of structures considering statistical uncertainty[J]. Journal of Harbin Institute of Technology, 2011, 43(8):11-15. (in Chinese)
[29] Gilks W R, Richardson S, Spiegelhalter D J. Markov Chain Monte Carlo in practice[J]. Computing Science & Statistics, 1996, 91(8):497-537.
[1] 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89-96.
[2] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[3] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[4] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[5] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[6] 吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138.
[7] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
[8] 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179.
[9] 郑山锁, 刘巍, 左河山, 董立国, 李强强. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4): 78-86.
[10] 黄维, 钱江, 周知. 竖向混合结构转换柱构件抗剪承载力研究[J]. 工程力学, 2018, 35(4): 96-106.
[11] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159-166.
[12] 金浏, 苏晓, 杜修力. 钢筋混凝土梁受弯破坏及尺寸效应的细观模拟分析[J]. 工程力学, 2018, 35(10): 27-36.
[13] 陈俊, 张白, 杨鸥, 蒋恩浩. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92-100.
[14] 郑山锁, 左英, 张晓辉, 程洋, 孙龙飞, 张艺欣. 酸性大气环境下多龄期平面钢框架结构抗震性能试验研究[J]. 工程力学, 2017, 34(9): 73-82.
[15] 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7): 136-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭彦林;陈国栋;缪友武. 加劲钢板剪力墙弹性抗剪屈曲性能研究[J]. 工程力学, 2006, 23(2): 84 -91,5 .
[2] 赵明华;刘齐建;曹喜仁;邹新军. 按桩顶沉降量控制超长灌注桩竖向承载力研究[J]. 工程力学, 2006, 23(2): 92 -96 .
[3] 崔玉红;秦庆华;王建山. HT有限元在Ⅰ、Ⅱ与Ⅲ型复合弹性断裂问题中的应用[J]. 工程力学, 2006, 23(3): 104 -110 .
[4] 袁振伟;褚福磊;王三保. 横向振动圆柱体在流体中的动力学特性[J]. 工程力学, 2006, 23(8): 49 -52 .
[5] 李 璟;韩大建. 屋盖风振响应功率谱及背景与共振响应的分离[J]. 工程力学, 2010, 27(6): 65 -071, .
[6] 谢 凡;沈蒲生. 钢筋混凝土剪力墙多垂直杆单元模型力学性质分析及其改进[J]. 工程力学, 2010, 27(6): 77 -082 .
[7] 迟福东;王进廷;金 峰&#;. 实时耦联动力试验的时滞稳定性分析[J]. 工程力学, 2010, 27(9): 12 -016, .
[8] 史文海;李正农;黄 斌. 12自由度4结点高精度矩形单元[J]. 工程力学, 2010, 27(9): 22 -026 .
[9] 罗素蓉;李 豪. 纤维自密实混凝土断裂能试验研究[J]. 工程力学, 2010, 27(12): 119 -123 .
[10] 刘艳辉;赵世春;强士中. 阻尼比对延性需求谱的影响[J]. 工程力学, 2011, 28(5): 200 -206 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日