工程力学 ›› 2018, Vol. 35 ›› Issue (11): 115-124.doi: 10.6052/j.issn.1000-4750.2017.06.0479
余波1,2,3, 陈冰1,4
YU Bo1,2,3, CHEN Bing1,4
摘要: 该文针对锈蚀钢筋混凝土(RC)梁抗剪承载力计算的传统确定性模型所存在的缺陷,研究建立了锈蚀RC梁抗剪承载力计算的概率模型。首先综合考虑钢筋锈蚀对箍筋屈服强度、配筋率、配箍率、临界斜裂缝倾角、梁有效抗剪截面积等重要因素的影响,结合修正压力场理论和考虑剪跨比影响的临界斜裂缝倾角模型,建立了锈蚀RC梁抗剪承载力计算的确定性模型;然后综合考虑客观不确定性和主观不确定性的影响,结合贝叶斯理论和马尔科夫链蒙特卡洛(MCMC)法,建立了锈蚀RC梁抗剪承载力计算的概率模型;最后通过与试验数据和传统确定性抗剪承载力计算模型的对比分析,验证了该概率模型的有效性和适用性。分析结果表明,所建立的概率模型不仅可以合理描述锈蚀RC梁抗剪承载力的概率分布特性,而且可以校准传统确定性抗剪承载力模型的计算精度和置信水平,具有良好的有效性和适用性。
中图分类号:
[1] 霍艳华. 锈蚀钢筋混凝土简支梁受剪承载力研究[J]. 工业建筑, 2006, 36(增刊1):910-912. Huo Yanhua. Research on shear capacity of simply supported concrete beam with corroded reinforcement[J]. Industrial Construction, 2006, 36(Suppl1):910-912. (in Chinese) [2] 中国建筑科学研究院. 钢筋混凝土结构设计与构造-85年设计规范背景资料汇编[M]. 北京:北京三环印刷厂, 1985:1-328. China Academy of Building Research. Design and construction of reinforced concrete structurescompilation of background data for 85 edition design codes[M]. Beijing:Beijing Sanhuan Printing Factory, 1985:1-328. (in Chinese) [3] 赵羽习, 金伟良. 锈蚀箍筋混凝土梁的抗剪承载力分析[J]. 浙江大学学报, 2008, 42(1):19-24. Zhao Yuxi, Jin Weiliang. Analysis on shearing capacity of concrete beams with corroded stirrups[J]. Journal of Zhejiang University, 2008, 42(1):19-24. (in Chinese) [4] Zararis P D. Shear compression failure in reinforced concrete deep beams[J]. Journal of Structural Engineering, 2003, 129(4):544-553. [5] 李士彬, 张鑫, 贾留东, 等. 箍筋锈蚀钢筋混凝土梁的抗剪承载力分析[J]. 工程力学, 2011, 28(增刊1):60-63. Li Shibin, Zhang Xin, Jia Liudong, et al. Analysis for shear capacity of reinforced concrete beams with corrosion stirrups[J]. Engineering Mechanic, 2011, 28(Suppl1):60-63. (in Chinese) [6] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese) [7] 余璠璟. 锈蚀钢筋混凝土梁斜截面性能试验研究和分析[D]. 南京:河海大学, 2005. Yu Fanjing. Experiment study and analysis on the diagonal shear property of corroded reinforced concrete beam[D]. Nanjng:Hohai University, 2005. (in Chinese) [8] El-Sayed A K. Shear capacity assessment of reinforced concrete beams with corroded stirrups[J]. Construction & Building Materials, 2017, 134:176-184. [9] ACI318-11, Building code requirements of structural concrete and commentary[S]. Farmington Hills:American Concrete Institute, 2011. [10] 卢朝辉, 李海, 赵衍刚, 等. 锈蚀钢筋混凝土梁抗剪承载力预测经验模型[J]. 工程力学, 2015, 32(增刊1):261-270. Lu Zhaohui, Li Hai, Zhao Yangang, et al. An empirical model for shear strength prediction of corrode RC beams[J]. Engineering Mechanics, 2015, 32(Suppl1):261-270. (in Chinese) [11] 余波, 陈冰, 唐睿楷, 等. 钢筋混凝土梁临界斜裂缝倾角计算的概率模型[J]. 计算力学学报, 2018, 35(1):98-104. Yu Bo, Chen Bing, Tang Ruikai, et al. Probabilistic model for critical crack angle of reinforced concrete beams[J]. 2018, 35(1):98-104. (in Chinese) [12] Collins M P, Mitchell D. Prestressed concrete structures[M]. New Jersey:Prentice Hall Englewood Cliffs, 1991. [13] Bentz E C, Collins M P. Development of the 2004 Canadian Standards Association (CSA) A23. 3 shear provisions for reinforced concrete[J]. Canadian Journal of Civil Engineering, 2006, 33(5):521-534. [14] Bentz E C, Vecchio F J, Collins M P. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements[J]. ACI Structural Journal, 2006, 103(4):614-624. [15] 魏巍巍, 贡金鑫. 钢筋混凝土构件基于修正压力场理论的受剪承载力计算[J]. 工程力学, 2011, 28(2):111-117. Wei Weiwei, Gong Jinxin. Shear strength of reinforced concrete members based on modified compression field theory[J]. Engineering Mechanic, 2011, 28(2):111-117. (in Chinese) [16] 惠云玲, 林志伸. 锈蚀钢筋性能试验研究分析[J]. 工业建筑, 1997, 27(6):10-13. Hui Yunling, Lin Zhishen. Experimental study and analysis on the property of corroded rebar[J]. Industrial Construction, 1997, 27(6):10-13. (in Chinese) [17] De Silva S, Mutsuyoshi H, Witchukreangkrai E. Evaluation of shear crack width in I-shaped prestressed reinforced concrete beams[J]. Journal of Advanced Concrete Technology, 2008, 6(3):443-458. [18] Higginsc W C, Farrow W C, Potisuk T, et al. Shear capacity assessment of corrosion-damaged reinforced concrete beams, Final Report SPR 326[R]. Washington, DC, Oregon Department of Transportation Research Unit, 2003. [19] Rodriguez J, Ortegal M, Casal J. Load carrying capacity of concrete structures with corroded reinforcement[J]. Construction & Building Materials, 1997, 11(4):239-248. [20] Xia J, Jin W L, Li L Y. Shear performance of reinforced concrete beams with corroded stirrups in chloride environment[J]. Corrosion Science, 2011, 53(5):1794-1805. [21] 李学田, 殷惠光. 锈蚀钢筋混凝土梁抗剪能力退化机理和预计模型[J]. 徐州工程学院学报, 2010, 25(4):58-63. Li Xuetian, Yin Huiguang. Degradation mechanism and predicting models of shearing capacity for corroded reinforced concrete beams[J]. Journal of Xuzhou Institute of Technology, 2010, 25(4):58-63. (in Chinese) [22] 徐善华, 牛荻涛. 锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J]. 建筑结构学报, 2004, 25(5):98-104. Xu Shanhua, Niu Ditao. The shear behavior of corroded simply supported reinforced concrete beam[J]. Journal of Building Structures, 2004, 25(5):98-104. (in Chinese)). [23] 霍艳华. 锈蚀钢筋混凝土简支梁受剪承载力研究[J]. 工业建筑, 2006, 36(S1):910-912. Huo Yanhua. Research on shear capacity of simply supported concrete beam with corroded reinforcement[J]. Industrial Construction, 2006, 36(S1):910-912. (in Chinese) [24] Farrow W C. Tests of reinforced concrete beams with corrosion-damaged stirrups[J]. ACI Structural Journal, 2006, 103(1):133-141. [25] 赵冰, 曾凡振. 锈蚀箍筋混凝土简支梁抗剪承载力模型及有限元分析[J]. 中国农村水利水电, 2010, 10:88-91. Zhao Bing, Zeng Fanzhen. The model and finite element analysis of shear capacity of simply supported concrete beam with corroded stirrup[J]. China Rural Water and Hydropower, 2010, 10:88-91. (in Chinese) [26] 李冰. 局部区段锈蚀的钢筋混凝土梁抗剪承载力试验研究[D]. 上海:上海交通大学, 2011. Li Bing. Experimental study on the shear capacity of reinforced concrete beam with partial length corrosion[D]. Shanghai:Shanghai Jiao Tong University, 2011. (in Chinese) [27] 柳世涛. 受腐蚀钢筋混凝土抗剪性能研究[D]. 长沙:中南大学, 2013. Liu Shitao. Research on shear behavior of corroded RC beams[D]. Changsha:Central South University, 2013. (in Chinese) [28] 吕大刚, 宋鹏彦, 王光远. 考虑模型不确定性的结构可靠度分析方法[J]. 哈尔滨工业大学学报, 2011, 43(8):11-15. Lü Dagang, Song Pengyan, Wang Guangyuan. Reliability analysis methods of structures considering statistical uncertainty[J]. Journal of Harbin Institute of Technology, 2011, 43(8):11-15. (in Chinese) [29] Gilks W R, Richardson S, Spiegelhalter D J. Markov Chain Monte Carlo in practice[J]. Computing Science & Statistics, 1996, 91(8):497-537. |
[1] | 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89-96. |
[2] | 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144. |
[3] | 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171. |
[4] | 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121. |
[5] | 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82. |
[6] | 吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138. |
[7] | 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186. |
[8] | 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179. |
[9] | 郑山锁, 刘巍, 左河山, 董立国, 李强强. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4): 78-86. |
[10] | 黄维, 钱江, 周知. 竖向混合结构转换柱构件抗剪承载力研究[J]. 工程力学, 2018, 35(4): 96-106. |
[11] | 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159-166. |
[12] | 金浏, 苏晓, 杜修力. 钢筋混凝土梁受弯破坏及尺寸效应的细观模拟分析[J]. 工程力学, 2018, 35(10): 27-36. |
[13] | 陈俊, 张白, 杨鸥, 蒋恩浩. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92-100. |
[14] | 郑山锁, 左英, 张晓辉, 程洋, 孙龙飞, 张艺欣. 酸性大气环境下多龄期平面钢框架结构抗震性能试验研究[J]. 工程力学, 2017, 34(9): 73-82. |
[15] | 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7): 136-145. |
|
近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:
1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。
2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。
感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!
《工程力学》杂志社
2018年11月15日