工程力学 ›› 2018, Vol. 35 ›› Issue (11): 92-98,145.doi: 10.6052/j.issn.1000-4750.2017.06.0454

• 土木工程学科 • 上一篇    下一篇

钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究

刘君平1, 徐帅2, 陈宝春1   

  1. 1. 福州大学土木工程学院, 福建, 福州 350116;
    2. 湖州市交通规划设计院, 浙江, 湖州 313000
  • 收稿日期:2017-06-11 修回日期:2017-12-11 出版日期:2018-11-07 发布日期:2018-11-07
  • 通讯作者: 刘君平(1977-),男,江西人,副研究员,博士,主要从事钢-混凝土组合结构研究(E-mail:ljp0486@163.com). E-mail:ljp0486@163.com
  • 作者简介:徐帅(1990-),男,山西人,助理工程师,硕士,主要从事钢-混凝土组合结构研究(E-mail:1078272956@qq.com);陈宝春(1958-),男,福建人,教授,博士,博导,主要从事钢-混凝土组合结构研究(E-mail:baochunchen@fzu.edu.cn).
  • 基金资助:
    国家自然科学基金(重点)资助项目(U1305245)

EXPERIMENTAL STUDY ON FLEXURAL BEHAVIORS OF STEEL-UHPC COMPOSITE GIRDER AND STEEL-CONVENTIONAL CONCRETE COMPOSITE GIRDER

LIU Jun-ping1, XU Shuai2, CHEN Bao-chun1   

  1. 1. College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350116, China;
    2. Huzhou Traffic & Plan Design Institute, Huzhou, Zhejiang 313000, China
  • Received:2017-06-11 Revised:2017-12-11 Online:2018-11-07 Published:2018-11-07

摘要: 采用超高性能混凝土(UHPC)板与钢梁结合的钢-UHPC组合梁,具有自重轻、抗裂性和耐久性好的优点,对于钢-混凝土组合梁的发展具有重要意义。为了解钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能的差别,本文以某钢-普通混凝土简支组合梁桥为工程背景,进行了钢-UHPC组合梁桥的试设计,在此基础上,制作钢-UHPC组合梁和钢-普通混凝土组合梁模型进行抗弯性能的对比试验研究。结果表明,两种组合梁的受力特点类似,破坏模式均表现为钢梁底板先屈服,然后桥面板顶部混凝土被压碎。在极限抗弯承载力相等的情况下,钢-UHPC组合梁的桥面板厚度可以减小28%,且延性更好。钢-UHPC组合梁桥面板的剪力滞效应、钢梁与桥面板间的水平相对滑移均小于钢-普通混凝土组合梁。此外,钢-UHPC组合梁弹性阶段抗弯刚度与钢-普通混凝土组合梁相差不大,但由于组合梁总高度减小,后期刚度小于钢-普通混凝土组合梁刚度。研究结果可为钢-UHPC组合梁的进一步研究与工程应用提供参考。

关键词: 钢-混凝土组合梁, 超高性能混凝土(UHPC), 桥面板, 受弯性能, 试验研究

Abstract: The steel-ultra-high performance concrete (UHPC) composite girder, which is composed of UHPC slab and steel girder, has the advantages of light self-weight, high cracking resistance and durability, and it is of great significance for the development of steel-concrete composite girders. To investigate the difference of mechanical performance of a steel-UHPC composite girder and steel-conventional concrete under bending, in this paper, a trial-design of steel-UHPC composite girder bridge was carried out based on the prototype structure of a practical steel-concrete simply supported composite girder bridge, according to the trial-design results, the experimental study on flexural behaviors of steel-UHPC composite girder and steel-conventional concrete composite girder were carried out. Test results show that flexural behaviors of two kinds of composite girder were similar. Both of their failure modes were that the bottom flange of steel girder was yielded first, and then the upper concrete of slab was crushed. Compared with a steel-conventional concrete composite girder, under the condition of equal ultimate flexural capacity, the slab thickness of steel-UHPC composite girder can be reduced by 28%, and the ductility is better. The shear lag effect and the relative slip between steel girder and concrete slab of steel-UHPC composite girder are much smaller than those of a steel-conventional concrete composite girder. Moreover, the flexural stiffness of the two kinds of composite girder are close in an elastic range. However, due to the decrease of total depth of a steel-UHPC composite girder, its flexural stiffness is some smaller in an elastic-plastic range. The research findings of this paper can provide a reference for further study and engineering practice.

Key words: steel-concrete composite girder, ultra-high performance concrete (UHPC), bridge deck slab, flexural behaviors, experimental study

中图分类号: 

  • U443.35
[1] 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6):111-122. Nie Jianguo, Tao Muxuan, Wu Lili, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6):111-122. (in Chinese)
[2] Brozzetti J. Design development of steel-concrete composite bridges in France[J]. Journal of Constructional Steel Research, 2000, 10(55):229-243.
[3] 樊健生, 聂建国. 负弯矩作用下考虑滑移效应的组合梁承载力分析[J]. 工程力学, 2005, 22(3):177-182. Fan Jiansheng, Nie Jianguo. Effects of slips on load-carrying capacity of composite beams under negative bending[J]. Engineering Mechanics, 2005, 22(3):177-182. (in Chinese)
[4] 聂建国, 樊健生. 组合梁在负弯矩作用下的刚度分析[J]. 工程力学, 2002, 19(4):33-36, 28. Nie Jianguo, Fan Jiansheng. Analysis of composite beam stiffness under negative bending[J]. Engineering Mechanics, 2002, 19(4):33-36, 28. (in Chinese)
[5] Graybeal B. Ultra-high performance concrete[R]. McLean VA:FHWA, 2011.
[6] Richard P, Cheyrezy M. Reactive powder concretes with high ductility and 200 MPa-800 MPa compressive strength[J]. ACI SP, 1994, 144(24):507-518.
[7] Richard P, Cheyrezy M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
[8] Larrard D F, Sedran T. Optimization of ultrahigh-performance concrete by the use of a packing model[J]. Cement and Concrete Research, 1994, 24(6):997-1009.
[9] Wille K, Naaman A E, Parra-Montesinos G J. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi):a simpler way[J]. ACI Materials Journal, 2011, 108(1):46-34.
[10] Wang C, Yang C, Liu F, et al. Preparation of ultra-high performance concrete with common technology and materials[J]. Cement and Concrete Composites, 2012, 34(4):538-544.
[11] Yang S L, Millard S G, Soutsos M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2009, 23(6):2291-2298.
[12] Blais Y P, Couture M. Precast prestressed pedestrian bridge-world's first reactive powder concrete structure[J]. PCI Journal, 1999, 44(5):60-71.
[13] Rebentrost M, Wight G. UHPC perspective from a specialist construction company[C]//Proceedings of UHPFRC 2009. Marselle:RILEM Publication, 2009.
[14] Graybeal B. UHPC in the U.S. highway infrastructure[C]//Proceedings of UHPFRC 2009. Marseille RILEM Publication, 2009.
[15] Tanaka Y, Ohtake A, Musha H, et al. Recent innovative application of UFC bridges in Japan[C]//Proceedings of UHPFRC 2009. Marselle:RILEM Publication, 2009.
[16] 杜任远, 黄卿维, 陈宝春. 活性粉末混凝土桥梁应用进展[J]. 世界桥梁, 2013, 41(1):69-74. Du Renyuan, Huang Qingwei, Chen Baochun. Application and study of reactive powder concrete to bridge engineering[J]. World Bridges, 2013, 41(1):69-74. (in Chinese)
[17] Sparowitz L, Freytag B, Reichel M, et al. Wild bridge-a-UHPC stainable arch made of UHPFRC[C]//Proceedings of 3rd Chinese-Croatian Joint Colloquium on Long Span Arch Bridge. Zagreb:SECON HDGK, 2011.
[18] Zimmermann W, Sparowitz L. Prefabricated UHPFRC parts and segmental flap method[C]//Proceedings of Fib Symposium. Prague:UGENT Publication, 2011.
[19] Tanaka Y, Maekawa K, Kameyama Y, et al. Innovation and application of UHPC bridges in Japan[C]//Proceedings of UHPFRC 2009. Marselle:RILEM Publication, 2009.
[20] 侯忠明. 钢-活性粉末混凝土简支组合梁受力性能研究[D]. 北京:北京交通大学, 2007:35-49. Hou Zhongming. Study on mechanical behavior of simply supported steel-RPC composite girder[D]. Beijing:Beijing Jiaotong University, 2007:35-49. (in Chinese)
[21] 张彦玲, 王元清, 季文玉. 钢-活性粉末混凝土简支组合梁正截面破坏模式[J]. 铁道科学与工程学报, 2009, 11(6):10-15. Zhang Yanlin, Wang Yuanqing, Ji Wenyu. Normal section failure mode of simple supported steel-reactive powder concrete composite girder[J]. Journal of Railway Science and Engineering, 2009, 11(6):10-15. (in Chinese)
[22] 邵旭东, 周环宇, 曹君辉. 钢-薄层RPC组合桥面结构栓钉的抗剪性能[J]. 公路交通科技, 2013, 30(4):35-39. Shao Xudong, Zhou Huanyu, Cao Junyao. Shear behavior of composite deck system composed of steel and ultra-thin RPC layer[J]. Journal of Highway and Transportation Research and Development, 2013, 30(4):35-39. (in Chinese)
[23] 张彦玲, 阎贵平, 安明喆, 等. 钢-活性粉末混凝土组合梁的极限承载力[J]. 北京交通大学学报, 2009, 33(1):82-85. Zhang Yanlin, Yan Guiping, An Mingzhe, at al. Ultimate bearing capacity of steel-reactive powder concrete composite girder[J]. Journal of Beijing Jiaotong University, 2009, 33(1):82-85. (in Chinese)
[24] GB 50917-2013, 钢-混凝土组合桥梁设计规范[S]. 北京:中国计划出版社,2014. GB 50917-2013, Code for design of steel and concrete composite bridges[S]. Beijing:China Plan Press, 2014. (in Chinese)
[1] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[2] 齐欣, 许浒, 余志祥, 赵雷, 孟庆成. 柔性拦截结构中减压环动态力学性能试验研究[J]. 工程力学, 2018, 35(9): 188-196.
[3] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[4] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88-96.
[5] 李天, 晁进涛, 樊嘉. 等腰三角形空间桁架自由扭转理论分析和试验研究[J]. 工程力学, 2018, 35(5): 223-230,238.
[6] 刘希月, 王元清, 石永久, 谭清华. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5): 54-64.
[7] 管宇, 周绪红, 卫世杰, 石宇. 冷弯薄壁型钢组合楼盖振动性能及静力挠度研究[J]. 工程力学, 2018, 35(5): 131-142.
[8] 杨青顺, 甄伟, 陆新征, 解琳琳, 林楷奇. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2): 47-58.
[9] 杨勇, 陈展, 王念念, 张波. 预应力钢带加固RC框架节点抗震性能试验研究[J]. 工程力学, 2018, 35(11): 106-114,154.
[10] 庞瑞, 许清风, 梁书亭, 朱筱俊. 全装配式RC楼盖板缝节点拉剪复合受力性能试验研究[J]. 工程力学, 2018, 35(10): 112-123.
[11] 孟宝, 钟炜辉, 郝际平. 不同跨度比下栓焊刚性连接梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(1): 79-87.
[12] 谢楠, 武桐, 胡杭, 李鸿飞. 混凝土浇筑期泵管撞击荷载的试验研究[J]. 工程力学, 2017, 34(增刊): 129-133.
[13] 董旭, 邓振全, 李树忱, 谷守法, 张峰. 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34(9): 230-238.
[14] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9): 43-53.
[15] 杨勇, 张超瑞, 泮勇溥, 张锦涛, 马新堡. 内藏钢管超高强混凝土芯柱组合柱抗震性能试验研究[J]. 工程力学, 2017, 34(8): 96-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
[4] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[5] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
[6] 郭惠勇;张陵;蒋健. 不同信息融合方法在结构损伤识别上的应用和分析[J]. 工程力学, 2006, 23(1): 28 -32,3 .
[7] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[8] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[9] 黄煜镔;钱觉时;周小平. 基于强度尺寸效应的准脆性材料脆性指标研究[J]. 工程力学, 2006, 23(1): 38 -42,5 .
[10] 李永莉;赵志岗;侯志奎. 卷积型加权残值法求解薄板的动力学问题[J]. 工程力学, 2006, 23(1): 43 -46 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日