工程力学 ›› 2018, Vol. 35 ›› Issue (10): 37-46,55.doi: 10.6052/j.issn.1000-4750.2017.06.0446

• 土木工程学科 • 上一篇    下一篇

UHPC单轴拉伸试验狗骨试件优化设计

杨简, 陈宝春, 沈秀将, 林毅焌   

  1. 福州大学土木工程学院, 福州 350108
  • 收稿日期:2017-06-07 修回日期:2017-12-22 出版日期:2018-10-12 发布日期:2018-10-12
  • 通讯作者: 陈宝春(1958-),男,福建人,教授,博导,主要从事钢管混凝土拱桥、超高性能混凝土和无缝桥梁相关研究(E-mail:baochunchen@fzu.edu.cn). E-mail:baochunchen@fzu.edu.cn
  • 作者简介:杨简(1990-),男,湖北人,博士生,主要从事超高性能混凝土和钢管节点疲劳相关研究(E-mail:845175145@qq.com);沈秀将(1990-),男,福建人,博士生,主要从事超高性能混凝土相关研究(E-mail:shenxiujiang@foxmail.com);林毅焌(1993-),男,福建人,硕士生,主要从事超高性能混凝土相关研究(E-mail:502425419@qq.com).
  • 基金资助:
    国家自然科学基金重点项目(U1305245)

THE OPTIMIZED DESIGN OF DOG-BONES FOR TENSILE TEST OF ULTRA-HIGH PERFORMANCE CONCRETE

YANG Jian, CHEN Bao-chun, SHEN Xiu-jiang, LIN Yi-jun   

  1. College of Civil Engineering of Fuzhou University, Fuzhou 350108, China
  • Received:2017-06-07 Revised:2017-12-22 Online:2018-10-12 Published:2018-10-12

摘要: 单轴拉伸试验是测试超高性能混凝土(Ultra-high Performance Concrete,简称UHPC)破坏机理、抗拉性能与拉伸本构关系最有效的方法。单轴拉伸试验成功率不高。其常用的狗骨试件形状与尺寸对试验成功率有较大的影响,目前还未有统一的标准。调查表明,不带缺口的狗骨试件最适合用于UHPC单轴拉伸试验,主要有梯形、弧形和阶梯形三种类型。通过对试件的受力分析,提出两个应力均匀性指标来评价试件优劣。建立了三种共275根狗骨试件的有限元模型,通过分析,分别给出三种试件均匀性较好的参数。同时,建立了三组15根试件有限元模型,横向对比了三种狗骨试件的应力均匀性。对比结果表明,弧形狗骨试件受力均匀性最好,开展的验证性试验取得了95.8%的成功率,推荐采用。

关键词: 超高性能混凝土, 单轴拉伸试验, 狗骨试件, 成功率, 有限元分析, 优化设计

Abstract: Uniaxial tensile testing is the most effective method for testing ultra-high-performance concrete (UHPC) damage mechanism, tensile strength, and tensile constitutive relationship. The uniaxial tensile test is a very sensitive and difficult test to conduct. In theory, the shape effects are absent. There are currently no testing standards available that define the test conditions and specimen geometry. Then unnotched dog-bones specimens have unique advantages. Due to the typology of a transition region, specimens can be divided into the arc-dog-bone, the trapezoid-dog-bone, and the multiple-dog-bone specimens. Based on the stress analysis of the specimen, two indexes of stress distribution were put forward to evaluate the specimens. The research can improve the success rate of uniaxial tensile test for UHPC by designing special dog-bone specimens. Thusly, the effects of a set of non-dimensional geometric parameters on the stress distribution were numerically investigated. A total of 275 dog-bones specimens were analyzed using non-dimensional parameters, and 15 specimens was proposed to compare the three types of dog-bone specimens. Based on the stress distribution in the effective test area, an optimized design is proposed for the dog-bone shape to improve the success rate of the uniaxial tensile test. Twenty-four dog-bone specimens were tested for the verification of the optimized dog-bone shape, the success rate of which is 95.8%.

Key words: Ultra-high performance concrete, uniaxial tensile test, dog-bone specimens, success rate, finite element analysis, optimized design

中图分类号: 

  • TU528.31
[1] 蔡向荣, 徐世烺. UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究[J]. 工程力学, 2010, 27(1):8-16. Cai Xiangrong, Xu Shilang. Study on corresponding relationships between flexural load-deformation hardening curves and tensile stress-strain hardening curves of UHTCC[J]. Engineering Mechanics, 2010, 27(1):8-16. (in Chinese)
[2] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3):1-24. Chen Baochun, Ji Tao, Huang Qingwei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3):1-24. (in Chinese)
[3] Kunieda M, Kozawa K, Ueda N, Nakamura H. Fracture analysis of strain hardening cementitious composites by means of discrete modeling of short fibers[C]. Korea:Fracture Mechanics of Concrete and Concrete Structures, 2010:501-508.
[4] Victor Y G, Lawrence F K, Kimberly E K. Tensile creep test of fiber-reinforced ultra-high performance concrete[J]. Journal of Testing and Evaluation, 2010, 38(6):674-682.
[5] Benny S, William J M, Sam A W, et al. Self-healing performance of engineered cementitious composites under natural environmental exposure[J]. Advances in Cement Research, 2016, 28(4):211-220.
[6] Seung H P, Dong J K, Gum S R, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cement & Concrete Composites, 2012, 34(2):172-184.
[7] Kanakubo T. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites[J]. Journal of Advanced Concrete Technology, 2006, 4(1):3.
[8] Wille K, EI-Tawil S, Naaman A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement & Concrete Composites, 2014, 48(2):53-66.
[9] 安明喆, 杨志慧, 余自若, 等. 活性粉末混凝土抗拉性能研究[J]. 铁道学报. 2010, 32(1):54-58. An Mingzhe, Yang Zhihui, Yu Ziruo, et al. Experimental study on the tensile performance of reactive powder concrete[J]. Journal of the China railway Society, 2010, 32(1):54-58. (in Chinese)
[10] 万朝均, 尹亚柳, 王小茜, 等. 超高性能混凝土的制备[J]. 硅酸盐通报, 2015, 34(12):3676-3681. Wan Chaojun, Yin Yaliu, Wang Xiaoqian, et al. Preparation of ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12):3676-3681. (in Chinese)
[11] 姚武, 粱正平, 陆海荣. 直接拉伸下混凝土的断裂能[J]. 水利学报, 1995, 8(8):28-32. Yao Wu, Liang Zhengping, Lu Hairong. Fracture energy of concrete under direct tension[J]. Journal of Hydraulic Engineering, 1995, 8(8):28-32. (in Chinese)
[12] 孙启林, 王利民. 钢纤维混凝土单轴拉伸实验方法[J]. 山西建筑, 2009, 35(25):1-3. Sun Qilin, Wang Limin. Uniaxial tensile test method for steel fibre concrete[J]. Shanxi Architecture, 2009, 35(25):1-3. (in Chinese)
[13] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013, 43(1):59-64. Kou Jialiang, Deng Mingke, Liang Xingwen. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure, 2013, 143(1):59-64. (in Chinese)
[14] CECS 13:2009, 纤维混凝土试验方法标准[S]. 北京:中国计划出版社, 2009. CN-CECS:2009, Standard test methods for fiber reinforced concrete[S]. Beijing:China Plans Publishing House, 2009. (in Chinese)
[15] 杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D]. 北京:北京交通大学, 2006. Yang Zhihui. Study on tension mechanical performance of reactive powder concrete in different steel fiber volume fractions[D]. Beijing. Beijing Jiaotong University, 2006. (in Chinese)
[16] Hassan A M T, Jones S W, Mahmud G H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2012, 37(12):874-882.
[17] Wille K, Xu M, El-Tawil S, et al. Dynamic impact factors of strain hardening UHP-FRC under direct tensile loading at low strain rates[J]. Materials and Structures, 2016, 49(4):1351-1365.
[18] Kamal A, Kunieda M, Naoshi U, et al. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement Concr Compos 2008, 30(10):863-871.
[19] Naaman A E, Homrich J R. Tensile stress strain properties of SIFCON[J]. Aci Materials Journal, 1989, 86(3):244-251.
[20] Sujiravorakul C. Development of high performance fiber reinforced cement composites using twisted polygonal steel fibers[D]. Michigan:University of Michigan. Ann, Arbor, 2002:230.
[21] Benson S D P, Karihaloo B L. CARDIFRC-Development and mechanical properties. Part Ⅲ:uniaxial tensile response and other mechanical properties[J]. Magazine of Concrete Research, 2005, 57(8):433-438.
[22] Malarics V, Mueller H S. Evaluation of the splitting tension test for concrete from a fracture mechanical point of view[C]//Jeju Oh B H, editor. Proceedings ofFraMCos-7. Fracture Mechanics of Concrete and Concrete Structures. Korea, Magazine of Concrete Research. 2010:709-715.
[23] Van Vliet M R A. Size effect in tensile fracture of concrete and rock[D]. Delft:Delft University of Technology, 2000.
[24] Wille K, Naaman A E, El-Tawil S. Ultra high performance fiber reinforced concrete (UHP-FRC) record performance under tensile loading[J]. Concrete International, 2011, 33(9):35-41.
[25] Ahmed K, Minoru K, Naoshi U, et al. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement & Concrete Composites, 2008, 30(10):863-871.
[26] Wang Y J, Li V C, Backer S. Experimental determination of tensile behavior of fiber reinforced concrete[J]. ACI Materials Journal, 1990, 87(5):461-468.
[27] Kazunori F, Takanori S, Nobuhito U, et al. Effects of strain rate on tensile behavior of reactive powder concrete[J]. Journal of Advanced Concrete Technology, 2006, 4(1):79-84.
[28] Benson S D P, Karihaloo B L. Development and mechanical properties. Part Ⅲ:Uniaxial tensile response and other mechanical properties[J]. Magazine of Concrete Research, 2005, 57(8):433-443.
[29] Jun P, Viktor M. Behaviour of strain-hardening cement-based composites (SHCC) under monotonic and cyclic tensile loading:part 1-experimental investigations[J]. Cement and Concrete Composites, 2010, 32(10):801-809.
[30] Claude Boulay, Pierre Rossi, Jean-Louis T. Uniaxial tensile test on a new cement composite having a hardening behavior[C]. Fiber Reinforced Concretes-BEFIB, 2004:61-68.
[31] 原海燕. 配筋活性粉末混凝土受拉性能试验研究及理论分析[D]. 北京:北京交通大学, 2009. Yuan Haiyan. Theoretical analysis and experimental research on tensile performance of reinforced reactive powder concrete[D]. Beijing. Beijing Jiaotong University, 2009. (in Chinese)
[32] Wille K, Kim D, Naaman A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials & Structures, 2011, 44(3):12.
[33] Kim D J, Wille K, Naaman A E, et al. Strength dependent tensile behavior of strain hardening fiber reinforced concrete[M]//Parra-Montesinos G J, Reinhardt H W, Naaman A E, eds. HPFRCC, Springer Netherlands, 2012, 2:3-10.
[34] Duy L N, Gum S R, Kyung T K, et al. Size and geometry dependent behavior of ultra-high performance fiber reinforced concrete[J]. Composites:Part B, 2014, 58(3):279-292.
[35] GB/T 31387-2015, 活性粉末混凝土[S]. 北京:中国标准出版社, 2015. GB/T 31387-2015, Reactive powder concrete[S]. Beijing:Standards Press of China, 2015. (in Chinese)
[36] Association Francaise de Genie Civil (AFGC)-Service d'etudes techniques desroutes et autoroutes (SETRA), Bétons fibrés à ultra-hautes performances-ultra high performance fibre-reinforced concretes, recommandations provisoires-Interim recommendations[S]. Paris:AFGC Scientific and Technical Documents, 2002:153.
[37] Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)[S]. Tokyo:Japan Society of Civil Engineers (JSCE), 2008:113.
[38] 沈秀将. 活性粉末混凝土(RPC)受拉性能试验研究[D]. 福州:福州大学, 2015. Shen Xiujiang. Test study on tensile behavior of reactive powder concrete (RPC)[D]. Fuzhou:Fuzhou University, 2015. (in Chinese)
[1] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[2] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[3] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[4] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[5] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[6] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真[J]. 工程力学, 2018, 35(7): 167-175,186.
[7] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[8] 王妮, 陈宗平, 陈宇良. 型钢混凝土L形柱空间角节点抗震性能分析[J]. 工程力学, 2018, 35(5): 180-192.
[9] 蒲利东, 罗务揆, 严泽洲. 气动伺服弹性系统结构陷幅滤波器优化设计[J]. 工程力学, 2018, 35(4): 235-241.
[10] 洪俊青, 刘伟庆, 方海, 张富宾. 复合材料夹层板单向受弯应力分析[J]. 工程力学, 2018, 35(4): 41-51.
[11] 黄汉辉, 陈康明, 吴庆雄, 王渠. 某中承式钢管混凝土桁式拱肋节点疲劳开裂分析[J]. 工程力学, 2017, 34(增刊): 167-173.
[12] 张有振, 杨璐, 周晖, 赵梦晗, 周宇航. 双相型不锈钢角焊缝连接承载性能有限元分析[J]. 工程力学, 2017, 34(9): 110-118, 157.
[13] 张艳霞, 李振兴, 刘安然, 李瑞, 刘学春. 自复位可更换软钢耗能支撑性能研究[J]. 工程力学, 2017, 34(8): 180-193.
[14] 乔朋, 狄谨, 秦凤江. 单箱多室波形钢腹板组合箱梁的腹板剪应力分析[J]. 工程力学, 2017, 34(7): 97-107.
[15] 陈津凯, 陈宝春, 刘君平. 钢管混凝土多排多列内栓钉受剪性能[J]. 工程力学, 2017, 34(6): 178-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日