工程力学 ›› 2018, Vol. 35 ›› Issue (10): 27-36.doi: 10.6052/j.issn.1000-4750.2017.06.0436

• 土木工程学科 • 上一篇    下一篇

钢筋混凝土梁受弯破坏及尺寸效应的细观模拟分析

金浏, 苏晓, 杜修力   

  1. 北京工业大学城市减灾与防灾防护教育部重点实验室, 北京 100124
  • 收稿日期:2017-06-06 修回日期:2017-09-22 出版日期:2018-10-12 发布日期:2018-10-12
  • 通讯作者: 杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:金浏(1985-),男,江苏人,教授,博士,博导,主要从事混凝土及混凝土结构领域研究(E-mail:jinliu@bjut.edu.cn);苏晓(1990-),男,山东人,硕士生,主要从事混凝土结构尺寸效应方面研究(E-mail:suxiao91@163.com).
  • 基金资助:
    国家重点研发计划项目(2016YFC0701100);国家自然科学基金创新研究群体项目(51421005)

MESO-SCALE SIMULATIONS ON FLEXURAL FAILURE AND SIZE EFFECT OF REINFORCED CONCRETE BEAMS

JIN Liu, SU Xiao, DU Xiu-li   

  1. The key laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2017-06-06 Revised:2017-09-22 Online:2018-10-12 Published:2018-10-12

摘要: 钢筋混凝土构件破坏的尺寸效应取决于混凝土材料的非均质性以及钢筋/混凝土相互作用。该文借助混凝土细观结构特征,基于非线性弹簧单元来描述钢筋与混凝土之间的相互作用,建立了钢筋混凝土梁破坏行为模拟的三维细观数值模型。在模拟结果与试验结果吻合良好的基础上,拓展模拟了更大尺寸梁的弯曲大变形破坏行为,并分析了单调及循环加载模式对不同尺寸悬臂梁受弯破坏及名义抗弯强度影响规律。模拟结果分析表明:1)该文工况下钢筋混凝土悬臂梁的弯曲破坏存在尺寸效应,弯曲强度随梁深增大而减小; 2)循环加载下,混凝土、钢筋以及两者间的粘结性能由于低周疲劳而使得梁的弯曲破坏呈现出脆性特征; 3)相比于单调加载,循环加载条件下,悬臂梁的破坏具有更强的脆性,名义抗弯强度尺寸效应更明显。

关键词: 钢筋混凝土梁, 受弯破坏, 单调加载, 循环加载, 尺寸效应, 三维细观模型

Abstract: The sources of size effect on RC members are the heterogeneity of concrete material and the interaction between steel and concrete. From the view of microcosmic, a three-dimensional micromechanical model for reinforced concrete beams was set up. In the model, the concrete heterogeneity was considered, and the interactions between steel and concrete was described by a nonlinear spring element. Base on the well agreement between simulation results and experimental results, the failure behavior of large beams was studied, meanwhile, the change of failure pattern and flexural strength of different size beams under monotonic and cyclic loading were analyzed. The simulation results show that:1) in the working condition of this article, the flexural of RC cantilever beams have the size effect, and the flexural strength decreases with the increase of depth of the beam; 2) under cyclic loading, the bending beam is brittle because of the fatigue of the bonding performance between concrete and steel; 3) compared to monotonic loading, the cantilever beam damage is more brittle and the size effect of nominal flexural strength is more obvious under a cyclic loading condition.

Key words: RC beam, flexural failure, monotonic loading, cyclic loading, size effect, 3D meso-scale model

中图分类号: 

  • TU375.1
[1] Bažant ZP, Planas J. Fracture and size effect in concrete and other quasi-brittle materials[M]. CRC Press, 1997:7-15.
[2] Hoover CG, Bažant ZP. Comprehensive concrete fracture tests:size effects of types 1& 2, crack length effect and postpeak[J]. Engineering Fracture Mechanics, 2013, 110(1):281-289.
[3] Ožbolt J, Meštrovic D, Li Y J, Eligehausen R. Compression failure of beams made of different concrete types and sizes[J]. ASCE Journal of Structural Engineering, 2000, 126(2):200-209.
[4] 车轶, 郑新丰, 王金金, 等. 单调荷载作用下高强混凝土梁受弯性能尺寸效应研究[J]. 建筑结构学报, 2012, 33(6):96-102. Che Yi, Zheng Xinfeng, Wang Jinjin, et al. Size effect on flexural behavior of reinforced high-strength concrete beams subjected to monotonic loading[J]. Journal of Building Structures, 2012, 33(6):96-102. (in Chinese)
[5] 车轶, 王金金, 郑新丰, 等. 反复荷载作用下高强混凝土梁受弯性能尺寸效应试验研究[J]. 建筑结构学报, 2013, 34(8):100-106. Che Yi, Wang Jinjin, Zheng Xinfeng, et al. Experimental study on size effect of flexural behavior of reinforced high-strength concrete beams subjected to cyclic loading[J]. Journal of Building Structures, 2013, 34(8):100-106. (in Chinese)
[6] Carpinteri A. Decrease of apparent tensile and bending strength with specimen size:Two different explanations based on fracture mechanics[J]. International Journal of Solids and Structures, 1989, 25(4):407-429.
[7] Alca N, Alexander S D B, MacGregor J G. Effect of size on flexural behavior of high-strength concrete beams[J]. ACI Structural Journal, 1997, 94(1):59-67.
[8] Weiss W J, Gular K, Shah S P. Localization and size-dependent response of reinforced concrete beams[J]. ACI Structural Journal, 2001, 98(5):686-695.
[9] William A L, Mario P. Size effect in small-scale models of reinforced concrete beams[J]. ACI Structural Journal, 1966, 63(11):1191-1204.
[10] Şener S, Begimgil M, Belgin Ç M. Size effect on failure of concrete beams with and without steel fibers[J]. Journal of Materials in Civil Engineering, 2002, 14(5):436-440.
[11] Rao G A, Vijayanand I, Eligehausen R. Studies on ductility and evaluation of minimum flexural reinforcement in RC beams[J]. Materials and Structures, 2008, 41(4):759-771.
[12] Bosco C, Carpinteri A, Debernardi P G. Minimum reinforcement in high-strength concrete[J]. ASCE Journal of Structural Engineering, 1990, 116(2):427-437.
[13] Yi S T, Kim M S, Kim J K, et al. Effect of specimen size on flexural compressive strength of reinforced concrete members[J]. Cement and Concrete Composites, 2007, 29(3):230-240.
[14] Yi S T, Kim M S, Kim J K. Effect of specimen sizes on flexural compressive strength of concrete[J]. ACI Structural Journal, 2001, 98(3):416-424.
[15] Kim J H J, Yi S T, Kim J K. Size effect of concrete members applied with flexural compressive stresses[J]. International Journal of Fracture, 2004, 126(1):79-102.
[16] Belgin Ç M, Şener S. Size effect on failure of over-reinforced concrete beams[J]. Engineering Fracture Mechanics, 2008, 75(8):2308-2319.
[17] 周宏宇, 李振宝, 杜修力, 郭二伟. 钢筋混凝土梁受弯破坏机理尺寸效应试验研究[J]. 应用基础与工程科学学报, 2012, 20(6):1051-1062. Zhou Hongyu, Li Zhenbao, Du Xiuli, Guo Erwei. Experimental study on size effect of bending failure mechanism of RC Beams[J]. Journal of Basic Science and Engineering, 2012, 20(6):1051-1062. (in Chinese)
[18] 金浏, 苏晓, 李冬, 杜修力. 地震作用下钢筋混凝土悬臂梁抗弯性能及尺寸效应试验研究[J]. 振动与冲击, 2017, 36(13):19-26. Jin Liu, Su Xiao, Li Dong, Du Xiuli. Experimental study on flexural behavior and size effect of RC cantilever beams subjected to seismic loading[J]. Journal of Vibration and Shock, 2017, 36(13):19-26. (in Chinese)
[19] Hoover C G, Bažant Z P. Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests[J]. International Journal of Fracture, 2014, 187(1):133-143.
[20] Jin Liu, Li Dong, Du Xiuli, Lu Aizhen. Experimental and Numerical Study on size effect in eccentrically loaded stocky RC Columns[J]. ASCE Journal of Structural Engineering, 2017, 143(2):04016170.
[21] Bažant Z P. Scaling theory for quasi-brittle structural failure[J]. Proceedings of the National Academy of sciences of the united states of america, 2004, 101(37):13400-13407.
[22] Rios R D, Riera J D. Size effects in the analysis of reinforced concrete structures[J]. Engineering Structures, 2004, 26(8):1115-1125.
[23] Wang L C, Bao J W. Meso-Scale Mesoscale computational simulation of the mechanical response of reinforced concrete members[J]. Computers and Concrete, 2015, 15(2):305-319.
[24] 李冬, 金浏, 杜修力, 等. 钢筋混凝土轴压柱长细比效应的细观数值研究[J]. 中国科学:技术科学, 2016, 46(9):961-969. Li Dong, Jin Liu, Du Xiuli, et al. Mesoscopic numerical investigations on the slenderness effect of reinforced concrete column under axial compression[J]. Science in China Technologica, 2016, 46(9):961-969. (in Chinese)
[25] 杜修力, 金浏. 细观分析方法在混凝土物理/力学性质研究方面的应用[J]. 水利学报, 2016, 47(3):355-371. Du Xiuli, Jin Liu. Applications of meso-scale analysis methods on the study of the physical/mechanical properties of concrete[J]. Journal of Hydraulic Engineering, 2016, 47(3):355-371. (in Chinese)
[26] Wriggers P, Moftah S O. Mesoscale models for concrete:Homogenization and damage behavior[J]. Finite Elements in Analysis and Design, 2006, 42(7):623-636.
[27] Unger J F, Eckardt S. Multiscale Modeling of Concrete[J]. Archives of Computational Methods in Engineering, 2011, 18(3):341-393.
[28] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3):299-326.
[29] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. ASCE Journal of Engineering Mechanics, 1998, 124(8):892-900.
[30] Majewski T, Bobinski J, Tejchman J. FE analysis of failure behaviour of reinforced concrete columns under eccentric compression[J]. Engineering Structures, 2008, 30(2):300-317.
[31] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[32] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(I):材料层次[J]. 土木工程学报, 2017, 50(9):28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (I):concrete materials[J]. China Civil Engineering Journal, 2017, 50(9):28-45. (in Chinese)
[33] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅱ):构件层次[J]. 土木工程学报, 2017, 50(11):24-44. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (Ⅱ):RC members[J]. China Civil Engineering Journal, 2017, 50(11):22-44. (in Chinese)
[34] Bažant Z P, Yu Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups:I. Formulation[J]. Journal of Structural Engineering, 2005, 141(12):1877-1885.
[35] Bažant Z P, Yu Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups:Ⅱ. Verification and calibration[J]. Journal of Structural Engineering, 2005, 141(12):1886-1897.
[36] Şener S, Barr B I G, Abusiaf HF. Size effect in axially loaded reinforced concrete columns[J]. ASCE Journal of Structural Engineering, 2004, 130(4):662-670.
[37] Syroka-Korol E, Tejchman J. Experimental investigations of size effect in reinforced concrete beams failing by shear[J]. Engineering Structures, 2014, 58:63-78.
[38] Barbhuiya S, Choudhury A M. A study on the size effect of RC beam-column connections under cyclic loading[J]. Engineering Structures, 2015, 95:1-7.
[39] Jin Liu, Du Min, Li Dong, et al. Effects of cross section size and transverse rebar on the behavior of short squared RC columns under axial compression[J]. Engineering Structures, 2017, 142:223-239.
[1] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[2] 何群, 陈以一, 田海. LYP100钢材大应变下滞回性能[J]. 工程力学, 2018, 35(S1): 27-33.
[3] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[4] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[5] 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179.
[6] 杜敏, 金浏, 李冬, 杜修力. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9): 54-63.
[7] 刘喜, 吴涛, 魏慧, 张玉. 基于能量损失平衡的轻骨料混凝土深受弯构件受剪分析[J]. 工程力学, 2017, 34(9): 211-219.
[8] 吴涛, 魏慧, 刘喜. 基于裂缝带理论的深受弯构件受剪分析[J]. 工程力学, 2017, 34(6): 92-100.
[9] 李冬, 金浏, 杜修力. 轴压加载下高强钢筋混凝土柱尺寸效应试验研究[J]. 工程力学, 2017, 34(4): 49-56,71.
[10] 闫秋实, 邵慧芳, 李亮. 冲击荷载作用下装配式钢筋混凝土梁力学性能研究[J]. 工程力学, 2017, 34(4): 196-205.
[11] 管俊峰, 王强, HU Xiaozhi, 白卫峰, 姜斌. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12): 22-30.
[12] 杨树桐, 陈瑜嘉. 钢筋与混凝土粘结界面局部断裂能的确定[J]. 工程力学, 2016, 33(增刊): 39-44.
[13] 李冬, 金浏, 杜修力, 卢爱贞. 钢筋混凝土柱偏心受压力学性能的细观数值研究[J]. 工程力学, 2016, 33(7): 65-72.
[14] 王万祯, 黄友钱, 陈飞益, 童科挺. 圆弧扩大头狗骨隔板贯通方钢管混凝土柱-H形钢梁节点抗震性能分析[J]. 工程力学, 2016, 33(5): 106-114,123.
[15] 赵菲, 冯鹏, 陈超核. 外包GFRP板钢筋混凝土梁的抗剪性能研究[J]. 工程力学, 2016, 33(1): 157-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日