工程力学 ›› 2018, Vol. 35 ›› Issue (9): 135-144.doi: 10.6052/j.issn.1000-4750.2017.05.0398

• 土木工程学科 • 上一篇    下一篇

一种箍筋约束混凝土峰值应力的概率模型

余波1,2,3, 陶伯雄1,2,3, 刘圣宾1,2,3   

  1. 1. 广西大学土木建筑工程学院, 南宁 530004;
    2. 广西大学工程防灾与结构安全教育部重点实验室, 南宁 530004;
    3. 广西大学广西防灾减灾与工程安全重点实验室, 南宁 530004
  • 收稿日期:2017-05-24 修回日期:2018-01-04 出版日期:2018-09-29 发布日期:2018-09-15
  • 通讯作者: 余波(1982-),男,四川人,教授,工学博士,主要从事钢筋混凝土结构和可靠度分析研究(E-mail:gxuyubo@gxu.edu.cn). E-mail:gxuyubo@gxu.edu.cn
  • 作者简介:陶伯雄(1991-),男,湖南人,硕士生,主要从事钢筋混凝土本构关系模型研究(E-mail:iamzigua@163.com);刘圣宾(1993-),男,河南人,硕士生,主要从事钢筋混凝土构件承载力分析研究(E-mail:liushengbin@mail.gxu.cn).
  • 基金资助:
    国家自然科学基金项目(51668008,51368006,51738004);广西重点实验室系统性研究项目(2013ZDX06)

A PROBABILISTIC MODEL FOR PEAK STRESS OF CONCRETE CONFINED BY TIES

YU Bo1,2,3, TAO Bo-xiong1,2,3, LIU Sheng-bin1,2,3   

  1. 1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China;
    2. Key Laboratory of Disaster Prevention and Structural Safety of China Ministry of Education, Guangxi University, Nanning 530004, China;
    3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
  • Received:2017-05-24 Revised:2018-01-04 Online:2018-09-29 Published:2018-09-15

摘要: 该文首先基于多轴受力情况下混凝土材料的极限强度面和Willam-Warnke五参数破坏准则,结合144组箍筋约束混凝土棱柱体的试验数据,建立了箍筋约束混凝土峰值应力的确定性模型;然后综合考虑主观不确定性和客观不确定性的影响,结合贝叶斯理论和马尔科夫链蒙特卡洛法,建立了箍筋约束混凝土峰值应力的概率模型;最后通过与试验数据和传统确定性模型的对比分析,验证了该概率模型的有效性和适用性。分析结果表明,该概率模型不仅能够合理描述箍筋约束混凝土峰值应力的概率特性,而且能够校准确定性模型的置信水平和预测精度,还可以确定具有预定置信水平的箍筋约束混凝土峰值应力的概率特征值。

关键词: 约束混凝土, 箍筋, 峰值应力, 极限强度面, 破坏准则, 概率模型

Abstract: Based on the ultimate strength surface of concrete under multiaxial stress and the Willam-Warnke five parameter failure criterion, a deterministic model for the peak stress of concrete confined by ties was established by combining with 144 groups of test data of prism concrete specimens confined by ties. Then, taking into account the influence of both epistemic and aleatory uncertainties, a probabilistic model for the peak stress of concrete confined by ties was established by the Bayesian theory and the Markov chain Monte Carlo method. The accuracy and applicability of the model were validated by comparing with the experimental data and the traditional deterministic models. The analysis results show that the proposed probabilistic model can reasonably describe the probabilistic characteristics of the peak stress of concrete confined by ties, since it can not only calibrate the confidence level and accuracy of existing deterministic models, but also determine the probabilistic characteristic value of the peak stress of concrete confined by ties corresponding to the predefined confidence level.

Key words: confined concrete, tie, peak stress, ultimate strength surface, failure criterion, probabilistic model

中图分类号: 

  • TU528.1
[1] Vu N S, Yu B, Li B. Stress-strain model for confined concrete with corroded transverse reinforcement[J]. Engineering Structures, 2017, 151:472-487.
[2] Vu N S, Yu B, Li B. Prediction of strength and drift capacity of corroded reinforced concrete columns[J]. Construction and Building Materials, 2016, 115:304-318.
[3] 史庆轩, 王南, 王秋维, 等. 高强箍筋约束高强混凝土轴心受压本构关系研究[J]. 工程力学, 2013, 30(5):131-137. Shi Qingxuan, Wang Nan, Wang Qiuwei, et al. Uniaxial compressive stress-strain model for high-strength concrete confined with high-strength lateral ties[J]. Engineering Mechanics, 2013, 30(5):131-137. (in Chinese)
[4] Meyer C, Roufaiel M S L, Arzoumanidis S G. Analysis of damaged concrete frames for cyclic loads[J]. Earthquake Engineering & Structural Dynamics, 1983, 11(2):207-228.
[5] Bunni N G, Scott B D, Park R, et al. Stress-strain behavior of concrete by overlapping hoops at low and high strain rates[J]. ACI Journal, 1982, 79(1):13-27.
[6] Guo Z H. Principles of reinforced concrete[M]. Oxford:Butterworth-Heinemann Elsevier Ltd, 2014:10-33.
[7] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[8] Li B, Park R, Tanaka H. Stress-strain behaviour of high strength concrete confined by ultra high and normal strength transverse reinforcements[J]. ACI Structural Journal, 2001, 98(3):395-406.
[9] Ahmad S H, Shah S P. Structural properties of high strength concrete and its implications for precast prestressed concrete[J]. PCI Journal, 1985, 30(6):92-119.
[10] Saatcioglu M, Razvi S R. Strength and ductility of confined concrete[J]. Journal of Structural Engineering, 1992, 118(6):1590-1607.
[11] Geyskens P, Kiureghian A D, Monteiro P. Bayesian prediction of elastic modulus of concrete[J]. Journal of Structural Engineering, 1998, 124(1):89-95.
[12] Li J, Feng D, Gao X, et al. Stochastic nonlinear behavior of reinforced concrete frames. I:experimental investigation[J]. Journal of Structural Engineering, 2015, 142(3):4015162-1-4015162-15.
[13] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9):1-12. Yu Zhiwu, Wu Lingyu, Shan Zhi. Models for deterministic and stochastic damage constitutions of concrete-a short review[J]. Engineering Mechanics, 2017, 34(9):1-12. (in Chinese)
[14] 吕大刚, 于晓辉, 王光远. 基于FORM有限元可靠度方法的结构整体概率抗震能力分析[J]. 工程力学, 2012, 29(2):1-8. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Global probabilistic seismic capacity analysis of structures based on FORM finite element reliability method[J]. Engineering Mechanics, 2012, 29(2):1-8. (in Chinese)
[15] William K L, Warnke E P. Constitutive model for the triaxial behavior of concrete[J]. International Association for Bridge and Structural Engineering, Proceedings, 1975, 19:1-30.
[16] Mander J B. Seismic design of bridge piers[D]. Christchurch:University of Canterbury Civil Engineering, 1983.
[17] Schickert G, Winkler H. Results of test concerning strength and strain of concrete subjected to multi-axial compressive stress[J]. Deutsche Ausschuss Für Stahlbeton, 1977(277):123.
[18] Khaloo A R, Ahmad S H. Behavior of high-strength concrete under torsional triaxial compression[J]. ACI Materials Journal, 1989(6):550-558.
[19] Sheikh S A, Uzumeri S M. Strength and ductility of tied concrete columns[J]. Journal of Pharmaceutical Sciences, 1980, 67(10):1408-1412.
[20] 李振宝, 宋佳, 杜修力, 等. 方形箍筋约束混凝土轴压力学性能尺寸效应试验研究[J]. 北京工业大学学报, 2014, 40(2):223-230. Li Zhenbao, Song Jia, Du Xiuli, et al. Experimental study on size effect of compressive response of concrete confined by square stirrups[J]. Journal of Beijing University of Technology, 2014, 40(2):223-230. (in Chinese)
[21] 车轶, 王铁东, 班圣龙, 等. 箍筋约束混凝土轴心受压性能尺寸效应研究[J]. 建筑结构学报, 2013, 34(3):118-123. Che Yi, Wang Tiedong, Ban Shenglong, et al. Size effect on behavior of concrete confined by stirrups under axial compression[J]. Journal of Building Structures, 2013, 34(3):118-123. (in Chinese)
[22] 史庆轩, 王南, 田园, 等. 高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究[J]. 建筑结构学报, 2013, 34(4):144-151. Shi Qingxuan, Wang Nan, Tian Yuan, et al. Study on stress-strain relationship of high-strength concrete confined with high strength stirrups under axial compression[J]. Journal of Building Structures, 2013, 34(4):144-151. (in Chinese)
[23] 史庆轩, 杨坤, 刘维亚, 等. 高强箍筋约束高强混凝土轴心受压力学性能试验研究[J]. 工程力学, 2012, 29(1):141-149. Shi Qingxuan, Yang Kun, Liu Weiya, et al. Experimental study on mechanical behavior of high strength concrete confined by high-strength stirrups under concentric loading[J]. Engineering Mechanics, 2012, 29(1):141-149. (in Chinese)
[24] Hong K N, Han S H, Yi S T. High-strength concrete columns confined by low-volumetric-ratio lateral ties[J]. Engineering Structures, 2006, 28(9):1346-1353.
[25] 钱稼茹, 程丽荣, 周栋梁. 普通箍筋约束混凝土柱的中心受压性能[J]. 清华大学学报(自然科学版), 2002, 42(10):1369-1373. Qian Jiaru, Chen Lirong, Zhou Liangdong. Behavior of axially loaded concrete columns confined with ordinary hoops[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(10):1369-1373. (in Chinese)
[26] Razvi S, Saatcioglu M. Confinement model for high-strength concrete[J]. Journal of Structural Engineering, 1999, 125(3):281-289.
[27] Kappos A J. Stress-strain model for confined reinforced concrete in bridge piers[J]. Journal of Structural Engineering, 1998, 123(5):624-633.
[28] 胡海涛, 叶知满. 复合箍筋约束高强混凝土应力应变性能[J]. 工业建筑, 1997, 27(10):23-28. Hu Haitao, Ye Zhiman. Stress-strain behavior of high-strength concrete confined by overlapping hoops[J]. Industrial Construction, 1997, 27(10):23-28. (in Chinese)
[29] Razvi S R, Saatcioglu M. Confinement of reinforced concrete columns with welded wire fabric[J]. ACI Structural Journal, 1989, 86(5):615-623.
[30] Yong Y K, Nour M G, Nawy E G. Behavior of laterally confined high-strength concrete under axial loads[J]. Journal of Structural Engineering, 1988, 114(2):332-351.
[31] Simon J. Estimation and inference via Bayesian simulation:an introduction to Markov Chain Monte Carlo[J]. American Journal of Political Science, 2000, 44(44):375-404.
[32] Lu X, Hsu C T T. Stress-strain relations of high-strength concrete under triaxial compression[J]. Journal of Materials in Civil Engineering, 2007, 19(3):261-268.
[33] Tan T H, Sun X. Failure criteria of concrete under triaxial compression[J]. Special Publication, 2006, 238:235-248.
[34] Pu J, Ding S, He B. Study of the behavior of concrete under triaxial compression[J]. Journal of Engineering Mechanics, 2002, 128(2):156-163.
[35] Candappa D C, Sanjayan J G, Setunge S. Complete triaxial stress-strain curves of high-strength concrete[J]. Journal of Materials in Civil Engineering, 2001, 13(3):209-215.
[36] Rutland C A, Wang M L. The effects of confinement on the failure orientation in cementitious materials experimental observations[J]. Cement & Concrete Composites, 1997, 19(2):149-160.
[37] Attard M. Stress-strain relationship of confined and unconfined concrete[J]. ACI Materials Journal, 1996, 93(5):432-442.
[38] Imran I, Pantazopoulou S J. Experimental study of plain concrete under triaxial stress[J]. ACI Materials Journal, 1996, 93(6):589-601.
[39] Xie J, Elwi A E, Macgregor J G. Mechanical properties of three high-strength concretes containing silica fume[J]. ACI Materials Journal, 1995, 92(2):135-145.
[40] Setunge S, Attard M M, Darvall P. Ultimate strength of confined very high-strength concretes[J]. ACI Structural Journal, 1993, 90(6):632-641.
[41] Bellotti R, Rossi P. Cylinder tests:experimental technique and results[J]. Materials and Structures, 1991, 24(1):45-51.
[42] Smith S S, William K J, Gerstle K H, et al. Concrete over the top, or:Is there life after peak?[J]. ACI Materials Journal, 1989, 86(5):491-497.
[43] Kotsovos M D, Newman J B. A mathematical description of the deformational behaviour of concrete under complex loading[J]. Magazine of Concrete Research, 1979, 31(107):77-90.
[44] Richart F E, Brandtzæg A, Brown R L. A study of the failure of concrete under combined compressive stresses[R]. Illinois:University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station, 1928.
[1] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[2] 张振宇, 万璐, 冯吉利. 带有橡胶垫层的混凝土接触特性试验及其内聚力模型[J]. 工程力学, 2018, 35(8): 55-66.
[3] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[4] 赵宪忠, 温福平. 钢骨约束混凝土的约束机制及其应力-应变模型建立[J]. 工程力学, 2018, 35(5): 36-46.
[5] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[6] 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179.
[7] 周甲佳, 潘金龙, 姚少科, 赵军, 张哲. 高强高性能混凝土三轴拉压压力学性能试验研究[J]. 工程力学, 2018, 35(4): 144-150.
[8] 王南, 史庆轩. 高强箍筋RC梁-柱节点抗剪模型及非线性分析[J]. 工程力学, 2017, 34(7): 89-96.
[9] 郭莹, 刘界鹏, 苗亚军, 王宇航, 许天祥. 圆CFRP-钢复合管约束混凝土短柱轴压试验研究[J]. 工程力学, 2017, 34(6): 41-50.
[10] 金浏, 苏晓, 杜修力. 基于三维细观数值方法的钢筋混凝土悬臂梁抗剪行为研究[J]. 工程力学, 2017, 34(12): 59-66.
[11] 曹胜涛, 李志山. 约束混凝土单轴弹塑性损伤本构模型[J]. 工程力学, 2017, 34(11): 116-125.
[12] 南波, 武岳, 孙浩田. 缠绕型CFRP圆管轴压力学性能[J]. 工程力学, 2017, 34(1): 92-100.
[13] 潘金龙, 何佶轩, 王路平, 周甲佳. ECC双轴压力学性能及破坏准则试验研究[J]. 工程力学, 2016, 33(6): 186-193.
[14] 李晶, 谢新宇, 张继发, 周建, 应宏伟. 基于亚塑性理论建立土体各向异性本构模型的一种新途径[J]. 工程力学, 2016, 33(2): 152-159.
[15] 信任, 张春侠. 砌体结构双轴拉压应力强度试验研究[J]. 工程力学, 2016, 33(10): 183-188,196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[2] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[3] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
[4] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[5] 杨璞;刘应华;袁鸿雁;岑章志. 计算结构极限载荷的修正弹性补偿法[J]. 工程力学, 2006, 23(3): 21 -26 .
[6] 罗战友;夏建中;龚晓南. 不同拉压模量及软化特性材料的球形孔扩张问题的统一解[J]. 工程力学, 2006, 23(4): 22 -27 .
[7] 吴琛;周瑞忠. 小波基无单元法及其与有限元法的比较[J]. 工程力学, 2006, 23(4): 28 -32 .
[8] 曹晖;Michael I. Friswell. 基于模态柔度曲率的损伤检测方法[J]. 工程力学, 2006, 23(4): 33 -38 .
[9] 李华波;许金泉;杨震. 等厚双层涂层材料受切向集中力作用的三维理论解[J]. 工程力学, 2006, 23(4): 45 -51 .
[10] 许杨健;李现敏;文献民. 不同变形状态下变物性梯度功能材料板瞬态热应力[J]. 工程力学, 2006, 23(3): 49 -55,9 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日