工程力学 ›› 2018, Vol. 35 ›› Issue (8): 39-45.doi: 10.6052/j.issn.1000-4750.2017.03.0263

• 土木工程学科 • 上一篇    下一篇

地震作用下梁体碰撞间隙宽度的概率分析方法

贾宏宇1,2, 杜修力1, 李兰平2, 黄胜前2, 郑史雄2   

  1. 1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124;
    2. 西南交通大学 土木工程学院, 成都 610031
  • 收稿日期:2017-03-31 修回日期:2017-09-18 出版日期:2018-08-29 发布日期:2018-08-29
  • 通讯作者: 杜修力(1963-),男,四川人,教授,博士,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:贾宏宇(1981-),男,四川人,副教授,博士,主要从事结构动力学领域研究(E-mail:Hongyu1016@swjtu.edu.cn);李兰平(1986-),男,四川人,讲师,博士生,主要从事桥梁抗震领域研究(E-mail:lilanping@swjtu.edu.cn);黄胜前(1983-),男,四川人,讲师,博士,主要从事桥梁抗震领域研究(E-mail:huangshengqian@swjtu.edu.cn);郑史雄(1965-),男,浙江人,教授,博士,主要从事桥梁抗震与抗风领域研究(E-mail:Zhengsx@swjtu.edu.cn).
  • 基金资助:
    中国博士后基金项目(2015M580031);国家自然科学基金项目(51308465)

PROBABILITY ANALYSIS OF POUNDING SEPARATION DISTANCE OF BRIDGES SUBJECTED TO EARTHQUAKE EXCITATIONS

JIA Hong-yu1,2, DU Xiu-li1, LI Lan-ping2, HUANG Sheng-qian2, ZHENG Shi-xiong2   

  1. 1. The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China;
    2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2017-03-31 Revised:2017-09-18 Online:2018-08-29 Published:2018-08-29

摘要: 为了表征地震动随机性对梁体碰撞间隙宽度设计的影响,基于随机振动理论和矩阵系统可靠度运算方法提出一套评价桥梁系统间隙需求宽度的概率方法。首先,建立空间地震激励下的桥梁碰撞间隙需求概率模型;其次,建立了桥梁梁体碰撞的有限元模型,推导了震级与梁体间隙宽度超越概率的关系;最后,基于矩阵系统运算方法得到桥梁系统所有碰撞处(梁体与梁体、梁体与桥台)各碰撞间隙宽度和桥梁系统碰撞概率关系。研究表明:随着震级增加,间隙宽度需求成非线性增加;梁体-桥台碰撞需求基本一致,梁体-梁体的碰撞概率比梁体-桥台碰撞概率要约大20%;在震级为7时,三个碰撞点均发生碰撞的超越概率约为63%,至少两处发生碰撞的概率为95%,至少一处发生碰撞的概率为100%。

关键词: 桥梁碰撞, 碰撞间隙, 矩阵系统可靠度, 随机振动, 地震作用

Abstract: To characterize the influence of randomness of ground motion on the pounding separation distance, based on the stochastic vibration theory and the matrix system reliability computing method, a probabilistic approach was proposed to evaluate the required separation length of a bridge system. Firstly, a probability model was developed on pounding separation distance of a bridge under spatially varying seismic loads. Secondly, the finite element model of the bridge pounding system was built, and the conditional exceedance probability relation of the separation distance between the adjacent bridge decks and the earthquake magnitude was obtained. Finally, by using the matrix system reliability computing method, the pounding probability relation of the bridge system and separation lengths of all pounding points (deck-deck and deck-abutment) was obtained. Some important conclusions were drawn that the demand of the separation length nonlinearly increases with the increase in the magnitude; the demand of pounding separation distance on deck-abutment at two ends of employed bridge was almost in agreement and the pounding probability at deck-deck pounding point was about 20% larger than that at deck-abutment pounding point. At a magnitude of 7, the probability of all three pounding points triggered was about 63%, the probability of at least two collision was 95%, and the probability of at least one collision was 100%.

Key words: bridge pounding, pounding separation length, matrix system reliability, random vibration, seismic action

中图分类号: 

  • TU311.3
[1] Kawashima K, Takahashi Y, Ge H, et al. Reconnaissance report on damage of bridges in 2008 Wenchuan, China, Earthquake[J]. Journal of Earthquake Engineering, 2009, 13(7):965-996.
[2] Hao H. A parametric study of the required seating length for bridge decks during earthquake[J]. Earthquake Engineering & Structural Dynamics, 1998, 27(1):91-103.
[3] Hao H, Zhang S R. Spatial ground motion effect on relative displacement of adjacent building structures[J]. Earthquake Engineering & Structural Dynamics, 1999, 28(4):333-349.
[4] 贾宏宇, 杜修力, 李晰, 等. 地震作用下高墩铁路桥梁梁体碰撞间隙宽度需求机理分析[J]. 工程力学, 2017, 34(2):207-215. Jia Hongyu, Du Xiuli, Li Xi, et al. Demand mechanism analysis on pounding separation distance of high pier railway bridges subjected to earthquake excitations[J]. Engineering Mechanics, 2017, 34(2):207-215. (in Chinese)
[5] 李青宁, 尹俊红, 张瑞杰, 等. 桥梁碰撞振动台试验及参数敏感性分析[J]. 长安大学学报(自然科学版), 2016, 36(4):58-65. Li Qingning, Yin Junhong, Zhang Ruijie, et al. Shaking table test of bridge pounding and analysis on parameter sensitivity[J]. Journal of Chang'an University (Natural Science Edition), 2016, 36(4):58-65. (in Chinese)
[6] Dezfuli F H, Alam M S. Effect of different steel-reinforced elastomeric isolators on the seismic fragility of a highway bridge[J]. Structural control & Health Monitoring, 2017, 2(24):1-15.
[7] Rao A S, Lepech M D, Kiremidjian A S, et al. Simplified structural deterioration model for reinforced concrete bridge piers under cyclic loading[J]. Structure and infrastructure Engineering, 2017, 13(1):55-66.
[8] Castaldo P, Palazzo B, Mariniello A. Effects of the axial force eccentricity on the time-variant structural reliability of aging r.c. cross-sections subjected to chloride-induced corrosion[J]. Engineering Structures, 2017, 130:261-274.
[9] 贾宏宇, 郑史雄. 基于场地效应的山区高墩桥梁随机地震响应分析[J]. 公路交通科技, 2012(6):93-97. Jia Hongyu,Zheng Shixiong. Analysis of random seismic response of high-rise pier bridge in mountain area based on site effect[J]. Journal of Highway and Transportation Research and Development, 2012(6):93-97. (in Chinese)
[10] 贾宏宇, 郑史雄, 阳栋, 等. 非平稳多维多点虚拟激励法的快速模拟方法[J]. 振动与冲击, 2013(18):108-112. Jia Hongyu, Zheng Shixiong, Yang Dong, et al. Fast simulation technique for non-stationary multidimensional and multi-support pseudo excitation method[J]. Journal of Vibration and Shock, 2013(18):108-112. (in Chinese)
[11] 贾宏宇, 郑史雄. 直接求解多维多点地震动方程的虚拟激励法[J]. 工程力学, 2013, 30(3):341-346. Jia Hongyu, Zheng Shixiong. Pseudo excitation method of direct solving ground motion equation of multi-dimensional and multi-support excitation[J]. Engineering Mechanics, 2013, 30(3):341-346. (in Chinese)
[12] 李忠献, 岳福青, 周莉. 基于随机振动理论确定桥梁地震碰撞的临界间隙[J]. 地震工程与工程振动, 2006, 26(4):156-161. Li Zhongxian, Yue Fuqing, Zhou Li, et al. Determination of critical gap length of seismic pounding for bridges based on random vibration theory[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4):156-161. (in Chinese)
[13] Zhang Deyi, Jia Hongyu, Zheng Shixiong, et al. A highly efficient and accurate stochastic seismic analysis approach for structures under tridirectional nonstationary multiple excitations[J]. Computers & Structures, 2014, 145:23-35.
[14] Bi K, Hao H, Chouw N. Required separation distance between decks and at abutments of a bridge crossing a canyon site to avoid seismic pounding[J]. Earthquake Engineering & Structural Dynamical, 2010, 39(3):303-323.
[15] 贾宏宇. 非平稳地震激励下山区高墩桥梁随机响应计算理论及应用研究[D]. 成都:西南交通大学, 2013. Jia Hongyu. Random response computational theory and application research of high pier bridges subjected to non-stationary earthquake excitations in the mountains[D]. Chengdu:Southwest Jiaotong University, 2013. (in Chinese)
[16] Chouw N, Hao H. Significance of SSI and non-uniform near-fault ground motions in bridge response Ⅱ:Effect on response with modular expansion joint[J]. Engineering Structures, 2008, 30(1):154-162.
[17] 李忠献, 周莉, 岳福青. 地震动空间效应与土-基础相互作用效应对隔震桥梁临界碰撞间隙的影响[J]. 土木工程学报, 2010, 43(7):85-90. Li Zhongxian, Zhou Li, Yue Fuqing. Effects of spatial variation of ground motion and soil foundation interaction on critical pounding gap length of seismic isolated bridges[J]. Journal of Civil Engineering, 2010, 43(7):85-90. (in Chinese)
[18] Bi K, Hao H, Chouw N. Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding[J]. Earthquake Engineering & Structural Dynamical, 2011, 40(9):1027-1043.
[19] Davenport A G. Note on the distribution of the largest value of a random function with application to gust loading[J]. Proceedings of the Institution of Civil Engineers, 2015, 28(2):187-196.
[1] 何浩祥, 王文涛, 范少勇. 考虑荷载分布模式的弯剪型结构最优刚度分布解析研究[J]. 工程力学, 2018, 35(7): 94-103,149.
[2] 甄伟, 盛平, 杨庆山, 田春雨. 嘉德艺术中心结构模型振动台试验与竖向地震作用分析[J]. 工程力学, 2018, 35(6): 200-208,230.
[3] 卢啸, 陆新征, 李梦珂, 顾栋炼, 解琳琳. 地震作用设计参数调整对框架结构抗震设计及安全性的影响[J]. 工程力学, 2017, 34(4): 22-31.
[4] 韦凯, 张攀, 王平. 扣件胶垫刚度的幅频变对轮轨耦合系统随机频响特征的影响[J]. 工程力学, 2017, 34(4): 108-115.
[5] 李慧乐, 夏禾. 基于车桥耦合随机振动分析的钢桥疲劳可靠度评估[J]. 工程力学, 2017, 34(2): 69-77.
[6] 贾宏宇, 杜修力, 李晰, 郑史雄, 陈志伟. 地震作用下高墩铁路桥梁梁体碰撞间隙宽度需求机理分析[J]. 工程力学, 2017, 34(2): 207-215.
[7] 郑山锁, 王晓飞, 韩言召. 酸性大气环境下锈蚀钢框架柱双参数地震损伤模型研究[J]. 工程力学, 2016, 33(7): 129-135,143.
[8] 郭金龙, 蔡健, 陈庆军. 地震作用下钢框架落层倒塌效应模拟分析[J]. 工程力学, 2016, 33(6): 171-179.
[9] 喻莹, 谭长波, 金林, 王钦华, 朱兴一. 基于有限质点法的单层球面网壳强震作用下连续倒塌破坏研究[J]. 工程力学, 2016, 33(5): 134-141.
[10] 任文杰, 王利强, 穆蒙蒙. SMA阻尼器控制单自由度结构在地震激励下的平稳随机振动研究[J]. 工程力学, 2016, 33(4): 98-103.
[11] 方吉, 李季涛, 王悦东, 兆文忠. 基于随机振动理论的焊接结构疲劳寿命概率预测方法研究[J]. 工程力学, 2016, 33(3): 24-30.
[12] 韦凯, 杨帆, 王平, 张攀. 扣件胶垫刚度频变的车辆-轨道耦合时变随机振动扩展辛分析[J]. 工程力学, 2016, 33(12): 232-240.
[13] 王德才, 倪四道, 叶献国. 设计谱长周期段取值与能量特征研究[J]. 工程力学, 2016, 33(1): 105-111.
[14] 吕龙, 李建中. 粘滞阻尼器对地震、列车制动和运行作用下公铁两用斜拉桥振动控制效果分析[J]. 工程力学, 2015, 32(12): 139-146.
[15] 韦凯, 翟婉明, 肖军华. 软土地铁盾构隧道垂向随机振动分析模型[J]. 工程力学, 2014, 31(6): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[3] 戈新生;陈立群;刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63 -68 .
[4] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[5] 罗冠炜;张艳龙;谢建华. 多自由度含间隙振动系统周期运动的二重Hopf分岔[J]. 工程力学, 2006, 23(3): 37 -43,6 .
[6] 李庆祥;孙炳楠;. 均匀流场中小曲率薄膜的气动稳定性分析[J]. 工程力学, 2006, 23(4): 39 -44,5 .
[7] 李雷;谢水生;黄国杰. 应变梯度塑性理论下超薄梁弯曲中尺度效应的数值研究[J]. 工程力学, 2006, 23(3): 44 -48 .
[8] 易贤仁;陶高梁;胡在良. 钢筋混凝土烟囱预应力环箍加固效应研究[J]. 工程力学, 2006, 23(4): 109 -113 .
[9] 张广清;陈勉. 水平井水压致裂裂缝非平面扩展模型研究[J]. 工程力学, 2006, 23(4): 160 -165 .
[10] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日