工程力学 ›› 2018, Vol. 35 ›› Issue (7): 18-23.doi: 10.6052/j.issn.1000-4750.2017.03.0252

• 基本方法 • 上一篇    下一篇

运动简谐振子作用下地基梁体系振动特性的半解析研究

程永锋1, 朱照清1, 卢智成1, 张富有2   

  1. 1. 中国电力科学研究院有限公司, 北京 102401;
    2. 河海大学土木与交通学院, 南京 210098
  • 收稿日期:2017-03-28 修回日期:2017-11-13 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 张富有(1972-),男,河南人,副教授,博士,主要从事岩土工程与工程抗震方面的研究(E-mail:fyzhangsy@hhu.edu.cn). E-mail:fyzhangsy@hhu.edu.cn
  • 作者简介:程永锋(1969-),男,安徽人,教授级高工,博士,所长,主要从事岩土工程与电力设施的隔震、抗震研究(E-mail:cyf@epri.sgcc.com.cn);朱照清(1983-),男,江苏人,高工,博士,主要从事岩土工程与电力设施的隔震、抗震研究(E-mail:clementfox@163.com);卢智成(1978-),男,江苏人,高工,博士,主要从事电力设施的振动控制研究(E-mail:luzc@epri.sgcc.com.cn).
  • 基金资助:
    国家自然科学基金青年基金项目(51308191)

THE DYNAMIC RESPONSE OF A SIMPLY SUPPORTED VISCOUSLY DAMPED BEAM SYSTEM UNDER A MOVING HARMONIC OSCILLATOR

CHENG Yong-feng1, ZHU Zhao-qing1, LU Zhi-cheng1, ZHANG Fu-you2   

  1. 1. China Electric Power Research Institute, Beijing 102401, China;
    2. College of Civil Engineering and Transportation Engineering, Hohai University, Nanjing 210098, China
  • Received:2017-03-28 Revised:2017-11-13 Online:2018-07-25 Published:2018-07-26

摘要: 该文研究了地基梁体系在运动简谐振子作用下的振动特性。其中,地基梁体系由均质各向同性的欧拉梁以及弹簧和阻尼器组成的粘弹性地基模型组成。而移动的简谐振子则通过单自由度体系来描述。推导地基梁体系-简谐振子的耦合振动控制方程,并通过引入中间变量建立该耦合振动控制方法状态空间方程,给出该状态空间的方程的逐步求解方法。最后,通过简单算例,研究地基的基本特性、简谐振子的基本特性对梁的振动的影响。

关键词: 地基梁, 移动荷载, 状态空间方程, 动力响应, 粘弹性地基模型

Abstract: The dynamic response of a foundation-beam system under a moving harmonic oscillator is investigated. The foundation-beam system is made of an elastic homogeneous isotropic Euler-Bernoulli beam, which is supported continuously by a foundation of elastic springs with viscous damping. The moving harmonic oscillator is simplified by a single degree of freedom (SDOF) system. The equation governing the vibration of Euler-Bernoulli beam is proposed. By introducing some state variables, a new state-space equation is established, which is then solved by a single-step scheme. Numerical examples are employed to investigate the effects of the mechanical properties of the oscillator and foundation on the response of the beam.

Key words: foundation-beam system, moving oscillator, state-space equation, dynamic response, viscoelastic foundation model

中图分类号: 

  • TU470+1
[1] 马连生, 欧志英, 黄达文. 不同梁理论之间简支梁特征值得解析关系[J]. 工程力学, 2006, 23(10):91-95. Ma Liansheng, Ou Zhiying, Huang Dawen. Analytical relationships of simply-supported beam's eigenvalues using different beam theories[J]. Engineering Mechanics, 2006, 23(10):91-95. (in Chinese)
[2] Sun L. A closed-form solution of a Bernoulli-Euler beam on a viscoelastic foundation under harmonic line loads[J]. Journal of Sound and Vibration, 2001, 242(4):619-627.
[3] Yu H, Yuan Y. Analytical solution for an infinite Euler-Bernoulli beam on a viscoelastic foundation subjected to arbitrary dynamics loads[J]. Journal of Engineering Mechanics, 2014, 140(3):542-551.
[4] Wu Y, Gao Y. Analytical solutions for simply supported viscously damped double-beam system under moving harmonic loads[J]. Journal of Engineering Mechanics, ASCE, 2015, 141(7):04015004.
[5] Li Y X, Sun L Z. Transverse vibration of an undamped elastically connected double-beam system with arbitrary boundary conditions[J]. Journal of Engineering Mechanics, 2016, 142(2):04015070.
[6] 潘旦光, 楼梦麟. 变截面Timoshenko简支梁动力特性的半解析解[J]. 工程力学, 2009, 26(8):6-9. Pan Dangaung, Lou Menglin. Semi-analytic solution of dynamic characteristics of non-prismatic Timoshenko simply supported beams[J]. Engineering Mechanics, 2009, 26(8):6-9. (in Chinese)
[7] 潘旦光, 郭泳. 变截面Timoshenko梁动力反应的半解析法[J]. 力学季刊, 2014, 35(3):521-530. Pan Danguang, Guo Yong. Semi-Analytical solution on dynamic response of Timoshenko beams with varying cross-section[J]. Chinese Quarterly of Mechanics, 2014, 35(3):521-530. (in Chinese)
[8] Basu D, Rao N S V. Analytical solutions for Euler-Bernoulli beam on visco-elastic foundation subjected to moving load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8):945-960.
[9] Thambiratnam D, Zhuge Y. Dynamic analysis of beams on an elastic foundation subjected to moving loads[J]. Journal of Sound and Vibration, 1996, 198(2):149-169.
[10] Sun L. An explicit representation of steady state response of a beam on an elastic foundation to moving harmonic line loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(1):69-84.
[11] 钱建固, 周仁义, 黄茂松. 高速移动荷载下弹性半空间饱和地基动应力响应[J]. 工程力学, 2016, 33(3):39-46. Qian Jiangu, Zhou Renyi, Huang Maosong. Dynamic stress responses to high-speed moving load on elastic saturated semi-space ground[J]. Engineering Mechanics, 2017, 2016, 33(3):39-46. (in Chinese)
[12] 刘隆, 谢伟平, 徐薇. 均布人群对简之欧拉梁动力特性的影响[J]. 工程力学, 2012, 29(8):189-194. Liu Long, Xie Weiping, Xu Wei. Effect on modal priorities of a simply supported Euler Beam occupied by a distributed crown[J]. Engineering Mechanics, 2012, 29(8):189-194. (in Chinese)
[13] 张铎, 李小珍. 移动简谐荷载列作用下简之梁竖向动力响应的解析解及其应用研究[J]. 应用力学学报, 2014, 31(1):144-149. Zhang Duo, Li Xiaozhen. Analysis and application of vertical dynamics response of simply supported beam bride under moving harmonic load series[J]. Chinese Journal of Applied Mechanics, 2014, 31(1):144-149. (in Chinese)
[14] 李小珍, 张志俊, 刘全民. 任意移动荷载列作用下简支梁桥竖向振动响应解析分析[J]. 振动与冲击, 2012, 31(20):137-142. Li Xiaozhen, Zhang Zhijun, Liu Quanmin. Analysis on vertical dynamic response of simply supported beam bridge under successive moving loads[J]. Journal of Vibration and Shock, 2012, 31(20):137-142. (in Chinese)
[15] 孙宇, 翟婉明. 基于格林函数法的车辆-轨道垂向耦合动力分析[J]. 工程力学, 2017, 34(3):219-226. Sun Yu, Zhai Wanming. Analysis of the vehicle-track vertical coupled dynamics based on the Green's function method[J]. Engineering Mechanics, 2017, 34(3):219-226. (in Chinese)
[16] 殷新锋, 丰锦铭, 刘扬. 考虑桥面等级退化影响的风-车流-桥梁耦合振动分析[J]. 工程力学, 2016, 33(3):87-94. Yin Xinfeng, Feng Jinming, Liu Yang. Vibration of the bridge-traffic-wind system considering bridge surface progressive deterioration[J]. Engineering Mechanics, 2016, 33(3):87-94. (in Chinese)
[17] 张斌, 罗雁, 雷晓燕. 改进迭代过程的车轨耦合振动数值解法及应用[J]. 工程力学, 2016, 33(3):128-134. Zhang Bin, Luo Yanyun, Lei Xiaoyan. Numerical approach for vehicle-track coupling vibration based on improved iterative process and its application[J]. Engineering Mechanics, 2016, 33(3):128-134. (in Chinese).
[18] 鲍四元, 邓子辰, 范存新. 质点与Euler-Bernoulli梁任意点撞击问题的解析解[J]. 振动与冲击, 2008, 27(1):163-166. Bao Siyuan, Deng Zichen, Fan Cunxin. Analytical solution to impact between a particle and an Euler-Bernoulli Beam at arbitrary position on the beam[J]. Journal of Vibration and Shock, 2008, 27(1):163-166. (in Chinese)
[19] Abu-Hilal M. Dynamic response of a double EulerBernoulli beam due to a moving constant load[J]. Journal of Sound and Vibration, 2006, 297(3/4/5):477-491.
[20] Chang T P, Lin G L, Chang E. Vibration analysis of a beam with an internal hinge subjected to a random moving oscillator[J]. International Journal of Solids and Structures, 2006, 43(21):6398-6412.
[21] Muscolino G, Palmeri A, Sofi A. Absolute versus relative formulations of the moving oscillator problem[J]. International Journal of Solids and Structures, 2009, 46(5):1085-1094.
[22] Wu Y, Gao Y. Dynamic response of a simply supported viscously damped double-beam system under moving oscollator[J]. Journal of Sound and Vibration, 2016, 384(7):194-209.
[1] 李小珍, 邱晓为, 刘德军, 秦羽. 时速400 km/h铁路常用跨度预应力混凝土简支梁竖向基频限值研究[J]. 工程力学, 2018, 35(5): 204-213.
[2] 李静, 蒋秀根, 王宏志, 罗双, 夏文忠, 李潇. 解析型弹性地基Timoshenko梁单元[J]. 工程力学, 2018, 35(2): 221-229,248.
[3] 赵春风, 陈健云, 王静峰. AP1000核电厂房动力特性参数化分析与优化[J]. 工程力学, 2017, 34(增刊): 282-288.
[4] 郭义庆, 喻君. 单柱失效下结构连续倒塌的动力响应分析[J]. 工程力学, 2017, 34(4): 72-77.
[5] 朱志辉, 杨乐, 王力东, 蔡成标, 戴公连. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4): 78-87, 100.
[6] 陈万祥, 郭志昆, 邹慧辉, 张涛. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究[J]. 工程力学, 2017, 34(1): 180-191.
[7] 王沿朝, 陈清军. 地震波反演与地下结构的动力响应分析[J]. 工程力学, 2016, 33(增刊): 227-233.
[8] 巴振宁, 梁建文. 流体饱和半空间中埋置球面P1、P2和SV波源动力格林函数[J]. 工程力学, 2016, 33(5): 34-43.
[9] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4): 1-8.
[10] 钱建固, 周仁义, 黄茂松. 高速移动荷载下弹性半空间饱和地基动应力响应[J]. 工程力学, 2016, 33(3): 39-46.
[11] 郭樟根, 曹双寅, 王安宝, 李悯粟, 孙伟民. 化爆作用下FRP加固RC板的试验研究及动力响应分析[J]. 工程力学, 2016, 33(3): 120-127.
[12] 张斌, 罗雁云, 雷晓燕. 改进迭代过程的车轨耦合振动数值解法及应用[J]. 工程力学, 2016, 33(3): 128-134.
[13] 胡安峰, 李怡君, 贾玉帅, 孙波, 谢康和. 埋置移动荷载作用下成层饱和地基的动力响应[J]. 工程力学, 2016, 33(12): 44-51,62.
[14] 杨勋, 王欢欢, 金先龙. 地震作用下隧道-列车系统动力响应及安全性分析[J]. 工程力学, 2016, 33(12): 176-185.
[15] 杨帆, 支旭东, 范峰. K8型单层球面网壳基于AUTODYN的外爆响应分析[J]. 工程力学, 2015, 32(增刊): 202-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨杰, 马萌璠, 王旭. 随机结构动力可靠度计算的条件概率方法[J]. 工程力学, 2018, 35(S1): 17 -21 .
[2] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47 -54 .
[3] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[4] 郑欣, 刘宇斌, 陈璞, 沈峰, 张圣君, 傅向荣. 基于弯扭耦合理论的颤振频率计算方法[J]. 工程力学, 2018, 35(S1): 1 -5,12 .
[5] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
[6] 钮鹏, 李旭, 李世荣, 金春福, 柳杨. 弹性约束下Timoshenko夹层梁的热屈曲行为研究[J]. 工程力学, 2018, 35(S1): 13 -16,39 .
[7] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134 -139 .
[8] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[9] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27 -35,74 .
[10] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161 -165,180 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日