工程力学 ›› 2018, Vol. 35 ›› Issue (7): 187-193.doi: 10.6052/j.issn.1000-4750.2017.03.0244

• 土木工程学科 • 上一篇    下一篇

砂浆材料SHPB实验及惯性效应的数值模拟研究

李潇1, 方秦1, 孔祥振2, 吴昊1   

  1. 1. 陆军工程大学爆炸冲击防灾减灾国家重点实验室, 江苏, 南京 210007;
    2. 白城兵器试验中心, 吉林, 白城 137000
  • 收稿日期:2017-03-24 修回日期:2017-10-24 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 方秦(1962-),男,福建福清人,教授,博士,博导,副校长,主要从事结构抗爆研究(E-mail:13776608867@139.com). E-mail:13776608867@139.com
  • 作者简介:李潇(1992-),女,湖南益阳人,硕士生,主要从事武器破坏效应和工程防护研究(E-mail:616740632@qq.com);孔祥振(1988-),男,山东德州人,工程师,博士,主要从事武器破坏效应和工程防护研究(E-mail:ouckxz@163.com);吴昊(1981-),男,陕西宝鸡人,副教授,博士,博导,主要从事军事工程防护研究(E-mail:abrahamhao@126.com).
  • 基金资助:
    国家自然科学基金项目(51321064,51427807,51210012);国家重点研发计划项目(2016YFC0305200)

SHPB TEST AND NUMERICAL INVESTIGATION ON THE INERTIA EFFECT OF MORTAR MATERIAL

LI Xiao1, FANG Qin1, KONG Xiang-zhen2, WU Hao1   

  1. 1. State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University, Nanjing, Jiangsu 210007, China;
    2. Weapon Test Center of Bai-City, Bai-City, Jilin 137000, China
  • Received:2017-03-24 Revised:2017-10-24 Online:2018-07-25 Published:2018-07-26

摘要: 进行了砂浆材料在不同应变率下的SHPB实验,拟合实验数据得到了动态强度放大因子DIF随应变率变化的关系曲线。基于实验测得应变率时程曲线,采用简化有限元模型,对实验进行了数值模拟。该文探讨了动态压缩实验中惯性效应产生的原因,并基于数值模拟对本实验中惯性效应对材料动态强度的影响进行了剥离,得到了砂浆材料动态强度放大因子随应变率变化的固有特性曲线,并将该固有特性曲线作为数值模拟中应变率效应的输入,计算结果与实验得到的应力-应变曲线吻合较好。进一步通过比较输入CEB推荐曲线和已有半经验公式的模拟结果,验证了所提出砂浆材料动态强度放大因子固有特性曲线的优越性。

关键词: SHPB实验, 应变率效应, 惯性效应, 数值模拟, 简化模型

Abstract: The dynamic compressive properties of mortar material at different strain-rates are experimentally investigated by split Hopkinson pressure bar (SHPB) test, in which the relationship between the dynamic increase factor (DIF) and strain-rate is obtained. Numerical simulations using a simplified model are conducted based on the strain rate curve obtained from experiments. The principle of the unavoidable inertia effect known as the "structure effect" in dynamic compressive tests is discussed. To obtain the inherent DIF of mortal material subjected to high strain-rate, numerical simulations are conducted to eliminate the inertia effect. It is found that the predicted stress-strain curves in the numerical simulation agree well with the corresponding experimental data when the above-mentioned inherent DIF is used as the numerical input. Furthermore, the superiorities of the proposed inherent DIF are validated by comparing the CEB recommended DIF and existing semi-empirical DIF as the numerical inputs.

Key words: SHPB test, strain-rate effect, inertia effect, numerical simulation, simplified model

中图分类号: 

  • O347.3
[1] Savoikar P, Orr J. Proceedings of the international conference on advances in concrete technology materials and construction practice[M]. Excel India, 2016:77-79.
[2] Zhou W, Tang L, Liu X, et al. Mesoscopic simulation of the dynamic tensile behavior of concrete based on a rate-dependent cohesive model[J]. International Impact Engineering, 2016, 95:165-175.
[3] Abrams D A. Effect of rate of application of load on the compressive strength of concrete[J]. ASTM J, 1917, 17(2):70-78.
[4] Glanville W H, Grime G, Davies W W. The behavior of reinforced-concrete piles during driving. (includes photographs and appendices)[J]. Journal of the Institution of Civil Engineers, 1935, 1(2):150-202.
[5] Cao J, Chung D D L. Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement[J]. Cement and Concrete research, 2002, 32(5):817-819.
[6] Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[C]. Journal Proceedings, 1953, 49(4):729-744.
[7] Bischoff P H, Perry S H. Impact behavior of plain concrete loaded in uniaxial compression[J]. Journal of Engineering Mechanics, 1995, 121(6):685-693.
[8] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. experimental characterization[J]. International Journal of Impact, Engineering, 2001, 25(9):869-886.
[9] Zhang M, Wu H J, Li Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I:Experiments[J]. International Journal of Impact Engineering, 2009, 36(12):1327-1334.
[10] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450.
[11] CEB-FIP Model Code 1990, Bulletin D'Information No.213/214[S]. Lausanne, Switzerland:Committee International du Beton, 1993.
[12] Hao Y, Hao H. Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings[J]. Engineering Structures, 2014, 73:24-38.
[13] Brace W F, Jones A H. Comparison of uniaxial deformation in shock and static loading of three rocks[J]. Journal of Geophysical Research, 1971, 76(20):4913-4921.
[14] Bertholf L D, Karnes C H. Two-dimensional analysis of the split Hopkinson pressure bar system[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(1):1-19.
[15] Forrestal M J, Wright T W, Chen W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3):405-411.
[16] Lu Y B, Li Q M. A correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing[J]. International Journal of Protective Structures, 2011, 2(1):127-138.
[17] Xu H, Wen H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J]. International Journal of Impact Engineering, 2013, 60:76-81.
[18] Hao H, Hao Y, Li Z X. Advances in protective structures research[M]. Boca Raton, CRC Press, 2012, 1:107-110.
[19] Hernandez-Bautista E, Bentz D P, Sandoval-Torres S, et al. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions[J]. Cement and Concrete Composites, 2016, 69:38-48.
[20] 程选生, 张爱军, 任毅, 等. 泥石流作用下砌体结构的破坏机理和防倒塌措施[J]. 工程力学, 2015, 32(8):156-163. Cheng Xuansheng, Zhang Aijun, Ren Yi, et al. Failure mechanism and anti-collapse measures of masonry structure under debris flow[J]. Engineering Mechanics, 2015, 32(8):156-163. (in Chinese)
[21] 金浏, 杜修力. 基于细观单元等效化方法的混凝土动态破坏行为分析[J]. 工程力学, 2015, 32(4):33-40. Jin Liu, Du Xiuli. Analysis of dynamic failure behavior of concrete based on the meso-element equivalent method[J]. Engineering Mechanics, 2015, 32(4):33-40. (in Chinese)
[22] 方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5):1-14. Fang Qin, Hong Jian, Zhang Jinhua, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014, 31(5):1-14. (in Chinese)
[23] Kong X, Fang Q, Wu H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International Journal of Impact Engineering, 2016, 95:61-71.
[24] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360.
[25] 辛雁清. 混凝土圆柱体试件和立方体试件抗压强度关系的分析[J]. 中国水能及电气化, 2015(7):59-62. Xin Yanqing. Analysis of compressive strength relationship between concrete cylinder specimen and cube specimen[J]. China Water Power & Electrification, 2015(7):59-62. (in Chinese)
[26] 陈惠发, 萨里普A F, 余天庆, 等. 弹性与塑性力学[M]. 北京:中国建筑工业出版社, 2004:109-114. Chen Huifa, Salipu A F, Yu Tianqing, et al. Mechanics of elasticity and plasticity[M]. Beijing:China Building Industry Press, 2004:109-114. (in Chinese)
[1] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[2] 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364.
[3] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[4] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[5] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[6] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249-256.
[7] 潘晓军, 张燕平, 陈曦, 高伟, 樊剑. 水平基底上薄膜流体的数学模型及其数值模拟[J]. 工程力学, 2018, 35(6): 24-32,41.
[8] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[9] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[10] 王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67.
[11] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[12] 田甜, 雷洋, 齐法琳, 黎国清. 不同时速列车振动荷载下衬砌拱圈振动响应传递规律[J]. 工程力学, 2018, 35(5): 143-151.
[13] 韩艳, 李凯, 陈浩, 蔡春声, 董国朝. 桥面典型车辆气动特性及车辆间挡风效应的数值模拟研究[J]. 工程力学, 2018, 35(4): 124-134,185.
[14] 樊鹏玄, 陈务军, 赵兵. 盘绕式伸展臂收纳过程理论分析与数值模拟[J]. 工程力学, 2018, 35(3): 249-256.
[15] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[2] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47 -54 .
[3] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[4] 徐 平, 胡晓智, 张敏霞, 马金一. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 0, (): 0 .
[5] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
[6] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[7] 颜王吉, 王朋朋, 孙倩, 任伟新. 基于振动响应传递比函数的系统识别研究进展[J]. 工程力学, 2018, 35(5): 1 -9,26 .
[8] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27 -35,74 .
[9] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117 -126 .
[10] 李万润, 王辉, 孙玉萍, 杜永峰, 王雪平, 吴忠铁. 考虑隔震支座特性的隔震结构多尺度模拟与试验验证[J]. 工程力学, 2018, 35(6): 115 -122,131 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日