工程力学 ›› 2018, Vol. 35 ›› Issue (7): 167-175,186.doi: 10.6052/j.issn.1000-4750.2017.03.0237

• 土木工程学科 • 上一篇    下一篇

超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真

张文华1,2, 张云升3, 陈振宇1   

  1. 1. 南京林业大学土木工程学院, 南京 210037;
    2. 江苏省建筑科学研究院, 南京 210008;
    3. 东南大学材料科学与工程学院, 南京 211189
  • 收稿日期:2017-03-22 修回日期:2017-09-11 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 张文华(1982-),男,广东人,副教授,博士,主要从事超高性能混凝土动态力学行为研究(E-mail:zhangwenhua2009@163.com). E-mail:zhangwenhua2009@163.com
  • 作者简介:张云升(1973-),男,河北人,教授,博士,主要从事超高性能混凝土设计与性能研究(E-mail:zhangys279@163.com);陈振宇(1996-),男,江苏人,硕士生,主要从事超高性能混凝土力学性能研究(E-mail:czy1996824@foxmail.com).
  • 基金资助:
    国家自然科学基金面上项目(51678309);江苏省自然科学基金面上项目(BK20161529);中国博士后基金面上项目(2016M600351);江苏省博士后基金面上项目(1601028B);硅酸盐建筑材料国家重点实验室开放基金项目(SYSJJ2017-09)

PENETRATION TEST AND NUMERICAL SIMULATION OF ULTRAL-HIGH PERFORMANCE CONCRETE WITH A SCALED EARTH PENETRATOR

ZHANG Wen-hua1,2, ZHANG Yun-sheng3, CHEN Zhen-yu1   

  1. 1. Department of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
    2. Jiangsu Research Institute of Building Science, Nanjing 210008, China;
    3. Department of Materials Science and Engineering, Southeast University, Nanjing 211189, China
  • Received:2017-03-22 Revised:2017-09-11 Online:2018-07-25 Published:2018-07-26

摘要: 超高性能混凝土(Ultra-high Performance Concrete,UHPC)是一种具有超高强度、超高韧性和超高抗力的新型建筑材料,系统研究UHPC抗缩比钻地弹侵彻机理,对提高军事防护工程的抗弹体侵彻能力和保障防护工程中人员的生命安全具有重要意义。该文利用弹道滑膛炮对C40普通混凝土和C180 UHPC靶体进行500 m/s和850 m/s的弹体侵彻试验,并采用LS-DYNA软件对侵彻过程进行仿真分析。结果表明:与普通混凝土相比较,超高性能混凝土具备优越的抗侵彻能力,能显著地减小弹体对靶体的损伤,有效减小侵彻深度和限制弹坑深度与弹坑直径;数值模拟过程中确定了超高性能混凝土在动态冲击作用下HJC模型的多个关键参数,模拟侵彻结果与真实试验数据十分接近,表明参数的选取与确定科学合理,为分析UHPC抗弹体侵彻机理提供了详实的数据。

关键词: 超高性能混凝土, 侵彻, 缩比钻地弹, LS-DYNA, 仿真

Abstract: Ultra-high performance concrete (UHPC) is a new construction material with a super high level of strength, toughness and resistance. Hence, a systematic study on the mechanisms of UHPC against a scaled earth penetrator is of great significance to enhance the anti-penetration ability of military protection engineering and ensure the safety of lives. In this paper, the ballistic smoothbore gun was used to carry out a series of penetration tests on the C40 ordinary concrete and C180 UHPC with speeds of 500m/s and 850m/s, respectively. In addition, a penetration process was simulated by the LS-DYNA software with the test data. Results show that the UHPC notably decreased the damage to targets caused by the projectile, efficiently reduced the penetration depth and restricted the depth and diameter of craters, which was superior to ordinary concrete in the performance against penetration. In the process of numerical simulation, the key parameters of the HJC model under the dynamic impact effect was determined. The simulation results agreed well with the test data, suggesting the selection of the parameter was reasonable, which provided detailed data for the analysis of the anti-penetration mechanisms of UHPC.

Key words: Ultra-high performance concrete, penetration, scaled earth penetrator, LS-DYNA, simulation

中图分类号: 

  • TU528.31
[1] 岳万英. 从近几场局部战争来看防护工程在未来战争中的作用和地位[C]. 中国土木工程学会防护工程分会第九次学术年会, 长春, 2004:1-9. Yue Wanying. From the local war in recent years to see the role of protection works in the future war and status[C]. The ninth annual meeting of China National Civil Engineering Society of Protection Engineering Branch, Changchun, 2004:1-9. (in Chinese)
[2] 何典章. 防护工程科研现状及发展趋势[C]. 中国土木工程学会防护工程分会第九次学术年会, 长春, 2004:19-29. He Dianzhang. Research status and development trend of protection engineering[C]. The ninth annual meeting of China National Civil Engineering Society of Protection Engineering Branch, Changchun, 2004:19-29. (in Chinese)
[3] 王振宇, 冯进技, 张殿臣. 国外小型钻地核武器的发展及防护建议[C]. 中国土木工程学会防护工程分会第九次学术年会, 长春, 2004:66-69. Wang Zhenyu, Fen Jinji, Zhang Diancheng. Development of foreign small earth-penetrating nuclear weapons and relevant preventing measures[C]. The ninth annual meeting of China National Civil Engineering Society of Protection Engineering Branch, Changchun, 2004:66-69. (in Chinese)
[4] Alkaysi M, El-Tawil S, Liu Z, et al. Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC)[J]. Cement and Concrete Composites. 2016, 66:47-56.
[5] Tafraoui A, Escadeillas G, Vidal T. Durability of the Ultra High Performances Concrete containing metakaolin[J]. Construction and Building Materials, 2016, 112:980-987.
[6] Yu R, Spiesz P, Brouwers H J H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56:29-39.
[7] Zhang W, Zhang Y, Zhang G. Static, dynamic mechanical properties and microstructure characteristics of ultra-high performance cementitious composites[J]. Science and Engineering of Composite Materials, 2012, 19(3):237-245.
[8] Zhang W, Zhang Y, Zhang G. Single and multiple dynamic impacts behaviour of ultra-high performance cementitious composite[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2011, 26(6):1227-1234.
[9] Wille K, El-Tawil S, Naaman A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48:53-66.
[10] Yoo D, Shin H, Yang J, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B:Engineering, 2014, 58:122-133.
[11] Shi C, Wu Z, Xiao J, et al. A review on ultra high performance concrete:Part I. Raw materials and mixture design[J]. Construction & Building Materials, 2015, 101:741-751.
[12] Ghafari E, Costa H, Júlio E. Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials[J]. Construction & Building Materials, 2015, 101:201-208.
[13] Lai J, Sun W. Dynamic mechanical behaviour of ultra-high performance fiber reinforced concretes[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(6):938-945.
[14] 赖建中, 孙伟. 活性粉末混凝土的层裂性能研究[J]. 工程力学, 2009(1):137-141. Lia Jianzhong, Sun Wei. The spalling behavior of reactive powder concrete[J]. Engineering Mechanics, 2009(1):137-141. (in Chinese)
[15] 赖建中, 孙伟, 焦楚杰, 等. 生态型RPC材料的动态力学性能[J]. 工业建筑, 2004, 34(12):63-66. Lia Jianzhong, Sun Wei, Jiao Chujie et la. Dynamic mechanical properties of ecological reactive powder concrete[J]. Industrial Construction, 2004, 34(12):63-66. (in Chinese)
[16] 赖建中, 朱耀勇, 谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5):193-199. Lai Jianzhong, Zhu Yaoyong, Tan Jianmin. Experiment and simulation of ultra-high performance concrete subjected to blast by embedded explosive[J]. Engineering Mechanics, 2016, 33(5):193-199. (in Chinese)
[17] 朱春银, 张云升, 高建明. 超高性能混凝土的制备与物理力学性能研究[J]. 混凝土与水泥制品, 2010(1):13-15. Zhu Chunyin, Zhang Yunsheng, Gao Jianming. Research on preparation and physical and mechanical properties of ultra-high performance concrete[J]. China Concrete and Cement Products, 2010(1):13-15. (in Chinese)
[18] 焦楚杰, 孙伟, 高培正. 钢纤维超高强混凝土动态力学性能[J]. 工程力学, 2006, 23(8):86-89. Jiao Chujie, Sun Wei, Gao Peizheng. Dynamic mechanical properties of steel fiber reinforced ultra-high strength concrete[J]. Engineering Mechanics, 2006, 23(8):86-89. (in Chinese)
[19] 戎志丹, 孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响[J]. 爆炸与冲击, 2009, 29(4):361-366. Rong Zhidan, SunWei. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites[J]. Explosion and Shock Waves, 2009, 29(4):361-366. (in Chinese)
[20] 梁斌. 弹体对有界混凝土靶的侵彻研究[D]. 绵阳:中国物理科学研究院, 2004. Liang Bing. Penetration of projectiles into a bounded concrete target[D]. Mianyang:Chinese Academy of Physical Sciences, 2004. (in Chinese)
[21] Holomquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]. 14th International Symposium on Ballistics Quebec, Canada, 1993:591-600.
[22] 孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究[J]. 工程力学, 2016, 33(8):248-256. Sun Qiran, Li Ruiyu, Zhao Yayun, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforce concrete[J]. Engineering Mechanics, 2016, 33(8):248-256. (in Chinese)
[23] 张文华. 超高性能水泥基复合材料微结构形成机理及动态力学行为研究[D]. 南京:东南大学, 2013. Zhang Wenhua. Investigation of microstructure formation mechanism and dynamic mechanical behavior of UHPCC[D]. Nanjing:Southeast University, 2013. (in Chinese)
[24] 彭永, 方秦, 吴昊, 等. 对弹体侵彻混凝土靶体阻力函数计算公式的探讨[J]. 工程力学, 2015, 32(4):112-119. Peng Yong, Fang Qin, Wu Hao, et al. Discussion on the resistance forcing function of projectiles penetrating into concrete targests[J]. Engineering Mechanics, 2015, 32(4):112-119. (in Chinese)
[1] 国巍, 李君龙, 刘汉云. 强地震下高速铁路桥上行车精细化模拟及行车安全性分析[J]. 工程力学, 2018, 35(S1): 259-264,277.
[2] 徐涛龙, 姚安林, 李又绿, 蒋宏业, 曾祥国. 基于全尺寸试验的挖掘机具作用埋地输气管道的多体动力学仿真[J]. 工程力学, 2017, 34(增刊): 300-307.
[3] 狄勤丰, 宋海涛, 陈锋, 王文昌, 张鹤, 靳泽中. 复杂载荷下油井管接头数值仿真平台的研发与应用[J]. 工程力学, 2017, 34(增刊): 295-299.
[4] 尹冠生, 姚如洋, 赵振宇. 高速公路防撞垫概念模型的优化及控制参数研究[J]. 工程力学, 2017, 34(增刊): 220-226.
[5] 薛刚, 孟煜童, 白纬宇. 大跨度混凝土连续箱梁桥运营阶段的温度场分析[J]. 工程力学, 2017, 34(增刊): 116-121.
[6] 李明, 吕振华. 一种锥形节流阀工作过程流-固耦合动力学响应的影响因素分析[J]. 工程力学, 2017, 34(9): 239-247.
[7] 李艳, 范文, 赵均海, 翟越. 中低速长杆弹侵彻半无限岩石靶的动态响应研究[J]. 工程力学, 2017, 34(9): 139-149.
[8] 陆文教, 陶功权, 王鹏, 付青云, 关庆华, 温泽峰. 地铁车轮磨耗对轮轨接触特性及动力学性能的影响[J]. 工程力学, 2017, 34(8): 222-231.
[9] 姜超, 胡志强, 刘昆, 王晋. 导管架平台圆形管柱撞击力的估算方法研究[J]. 工程力学, 2017, 34(7): 249-256.
[10] 王丽娟, 胡昌斌, 曾宇鑫. 水泥混凝土路面板早龄期翘曲行为数值分析研究[J]. 工程力学, 2017, 34(7): 146-155.
[11] 任福深, 程晓泽, 李洋, 王宝金, 朱安贺, 赵蕾. 粒子射流耦合冲击破岩建模与实验分析[J]. 工程力学, 2017, 34(2): 249-256.
[12] 陈镇鹏, 宋言, 张雄, 吴博. 耦合有限元物质点法及其在流固耦合问题中的应用[J]. 工程力学, 2017, 34(12): 14-21.
[13] 李小珍, 耿杰, 王党雄, 张迅, 梁林. 中低速磁浮列车-低置梁系统竖向耦合振动研究[J]. 工程力学, 2017, 34(12): 210-218,247.
[14] 陈长海, 侯海量, 张元豪, 朱锡, 李典. 钝头弹高速斜侵彻中厚背水金属靶板的机理研究[J]. 工程力学, 2017, 34(11): 240-248.
[15] 杨风利, 朱彬荣, 邢海军. 输电铁塔螺栓节点连接滑移特性及模型参数研究[J]. 工程力学, 2017, 34(10): 116-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[2] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47 -54 .
[3] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[4] 洪越, 唐贞云, 林树潮, 李振宝. 一种新型变曲率摩擦摆力学性能的试验研究[J]. 工程力学, 2018, 35(S1): 113 -119 .
[5] 徐 平, 胡晓智, 张敏霞, 马金一. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 0, (): 0 .
[6] 赵保庆, 王启明, 李志恒, 雷政. FAST圈梁支承结构性能理论与实验研究[J]. 工程力学, 2018, 35(S1): 200 -204,211 .
[7] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
[8] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[9] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27 -35,74 .
[10] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117 -126 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日