工程力学 ›› 2018, Vol. 35 ›› Issue (7): 47-54.doi: 10.6052/j.issn.1000-4750.2017.03.0213

• 土木工程学科 • 上一篇    下一篇

设有单根拉条滑动座连接檩条的稳定性分析

唐亚军, 童根树, 张磊   

  1. 浙江大学建筑工程学院, 杭州 310058
  • 收稿日期:2017-03-17 修回日期:2017-09-08 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 童根树(1963-),男,浙江人,教授,博士,博导,主要从钢结构稳定性研究(E-mail:tonggs@zju.edu.cn). E-mail:tonggs@zju.edu.cn
  • 作者简介:唐亚军(1993-),男,安徽人,硕士生,主要从事钢结构稳定性研究(E-mail:yajun@zju.edu.cn);张磊(1978-),男,浙江人,副教授,博士,博导,主要从事钢结构稳定性研究(E-mail:celzhang@zju.edu.cn).
  • 基金资助:
    国家自然科学基金面上项目(51478421)

BUCKLING OF PURLINS SUPPORTING STANDING SEAM ROOF WITH ONE SAG-ROD

TANG Ya-jun, TONG Gen-shu, ZHANG Lei   

  1. College of Civil Engineering & Architecture, Zhejiang University, Hangzhou 310058, China
  • Received:2017-03-17 Revised:2017-09-08 Online:2018-07-25 Published:2018-07-26

摘要: 采用精确解析解方法研究了跨中设有拉条、与屋面板采用滑动座连接的檩条承受纯弯矩时的弯扭屈曲,檩条两端简支,屋面板对檩条提供均布弹性扭转约束,拉条提供侧向弹性支撑。求解得到了解析解,给出了檩条由对称屈曲转变为非对称屈曲对应的拉条门槛刚度的表达式,并讨论了檩条截面、跨度、扭转约束刚度大小、拉条刚度大小及拉条作用点高度等因素对门槛刚度和临界弯矩的影响。经过全范围算例计算,给出了临界弯矩简化表达式。研究发现,无论均布扭转约束多大,无拉条时檩条总是以一个正弦半波屈曲,从而呈现出与均布弹性地基上压杆的屈曲不一样的性质。

关键词: 稳定, 薄壁构件, 檩条, 拉条, 扭转约束, 门槛刚度

Abstract: Buckling of purlins, supporting standing seam roof, simply supported at both ends and acted by pure moment, is studied by a closed-form solution. The uniform distributed torsional restraint provided by the roof sheeting and the lateral elastic restraint provided by the sag-rod placed at the mid-span are considered. The analytical solutions are found, the threshold stiffness of the sag-rod, at which the buckling mode changes from symmetrical buckling to anti-symmetrical one is observed and developed, and the discussion extended to the effects of many factors such as the cross-sectional profile, span length, torsional restraint, sag-rod's stiffness and the height of the sag-rod connecting point along the web on the buckling moment and threshold stiffness. A simplified formula for the buckling moment is also presented based on the calculations covering almost full ranges of various parameters. The investigation shows that the purlin buckles into only one half-wave no matter how large the uniform distributed torsional restraint is, which differs fundamentally from the buckling of a compressed column on a Winkle foundation where several half waves are possible if the elastic stiffness is large enough.

Key words: stability, thin-walled member, purlin, sag-rod, torsional restraint, threshold stiffness

中图分类号: 

  • TU391
[1] 陈明, 黄骥辉, 赵根田. 组合截面冷弯薄壁型钢结构研究进展[J]. 工程力学, 2016, 33(12):1-11 Chen Ming, Huang Jihui, Zhao Gentian. Research process of compound section cold-formed thin-wall steel structures[J]. Engineering Mechanics, 2016, 33(12):1-11. (in Chinese)
[2] 白凡, 杨娜, 王晓峰. 简支C型檩条在风吸力作用下精确应力计算模型[J]. 工程力学, 2017, 34(3):131-140. Bai Fan, Yang Na, Wang Xiaofeng. Analytical method for simply supported c-sections purlins under wind uplift loadings[J]. Engineering Mechanics, 2017, 34(3):131-140. (in Chinese)
[3] 姚谏. 普通卷边槽钢的弹性畸变屈曲荷载[J]. 工程力学, 2008, 25(12):30-34. Yao Jian. Distortional buckling loads of cold-formed lipped channels[J]. Engineering Mechanics, 2008, 25(12):30-34. (in Chinese)
[4] 童根树, 冯一笑, 张磊. 受弯Z形檩条畸变屈曲与整体屈曲统一分析方法[J]. 工程力学, 2017, 34(5):116-124, 131. Tong Genshu, Feng Yixiao, Zhang Lei. A unified analysis method for distortional and global buckling of Z-purlins in flexure[J]. Engineering Mechanics, 2017, 34(5):116-124, 131. (in Chinese)
[5] 童根树, 樊勇伟, 张磊. C形和Z形檩条的弹性弯扭屈曲分析[J]. 钢结构, 2015, 30(10):9-17. Tong Genshu, Fan Yongwei, Zhanglei. Elastic flexural-torsional buckling of C-purlin and Z-purlin[J]. Steel Construction, 2015, 30(10):9-17. (in Chinese)
[6] Zhang L, Tong G S. Lateral buckling of simply supported C-and Z-section purlins with top flange horizontally restrained[J]. Thin-Walled Structures. 2016, 99:155-167.
[7] 刘逸祥, 童根树, 张磊. 风吸力作用下仅考虑扭转约束的Z形和C形檩条弹性弯扭屈曲[J]. 四川大学学报(工程科学版), 2015, 47(1):118-127. Liu Yixiang, Tong Genshu, Zhang Lei. Elastic stability of cold-formed Z & C purlins under wind suction considering the effects of torsional restraint[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(1):118-127. (in Chinese)
[8] 刘逸祥, 童根树, 杜慧琳, 等. 立缝支架屋面体系对Z型檩条扭转约束的试验研究和有限元分析[J]. 建筑结构学报, 2014, 35(11):116-124. Liu Yixiang, Tong Genshu, Du Huilin, et al. Test and finite element analysis on torsional restraint of corrugated steel sheet to purlin through clips[J]. Journal of Building Structures, 2014, 35(11):116-124. (in Chinese)
[9] 童根树, 邵峰. 压型钢板屋面对檩条的扭转约束[J]. 工业建筑, 2010, 40(3):111-115. Tong Genshu, Shao Feng. Torsional restraint on purlins by corrugated steel sheet[J]. Industrial Construction, 2010, 40(3):111-115. (in Chinese)
[10] 童根树. 拉条在檩条侧向稳定中的作用[J]. 工业建筑, 2013, 43(12):52-56. Tong Genshu. Efficiency of sag rods as lateral supports for stability of purlins[J]. Industrial Construction, 2013, 43(12):52-56. (in Chinese)
[11] Zhang L, Tong G S. Lateral buckling of C-section purlins with one anti-sag bar at middle span section[J]. Thin-Walled Structures, 2016, 102:246-257.
[12] Zhang L, Tong G S. Stress analysis on cold-formed C-purlins subjected to wind suction load considering the effective stiffness of anti-sag bar[J]. Thin-Walled Structures, 2015, 90:107-118.
[13] 童根树. 钢结构的平面外稳定[M]. 北京:中国建筑工业出版社, 2013. Tong Genshu. Out-of-plane stability of steel structures[M]. Beijing:China Architecture Industry Press, 2013. (in Chinese)
[14] Polyzois D. Sag rods as lateral supports for girts and purlins[J]. Journal of Structural Engineering, 1987, 113(7):1521-1531.
[15] Hancock G J, Trahair N S. Lateral buckling of roof purlins with diaphragm restraints[J]. Computer Programs, 1978, 20:10-15.
[16] Larue B, Khelil A, Gueury M. Elastic flexural-torsional buckling of steel beams with rigid and continuous lateral restraints[J]. Journal of Constructional Steel Research, 2007, 63(5):692-708.
[17] Mohammadi E, Hosseini S S, Rohanimanesh M S. Elastic lateral-torsional buckling strength and torsional bracing stiffness requirement for monosymmetric I-beams[J]. Thin-Walled Structures, 2016, 104(3):116-125.
[18] Nguyen C T, Joo H S, Moon J, et al. Flexural-torsional buckling strength of I-girders with discrete torsional braces under various loading conditions[J]. Engineering Structures, 2012, 36(5):337-350.
[19] Tong G S, Chen C S. Buckling of laterally and torsionally braced beams[J]. Journal of Constructional Steel Research, 1988, 11(1):41-55.
[20] 刘占科, 周绪红. 薄壁构件弯扭屈曲总势能的完备性分析[J]. 工程力学, 2017, 34(7):1-10. Liu Zhanke, Zhou Xuhong. An analysis on completeness of total potential energy of thin-walled members with flexural-torsional buckling[J]. Engineering Mechanics, 2017, 34(7):1-10. (in Chinese)
[21] 童根树. 钢结构的平面内稳定[M]. 北京:中国建筑工业出版社, 2005. Tong Genshu. In-plane stability of steel structure[M]. Beijing:China Architecture Industry Press, 2015. (in Chinese)
[22] Sun K, Tong G, Zhang L. Twisting about constrained line of parallel purlins inter braced by sagrods under wind suctions[J]. Thin-Walled Structures, 2016, 108:30-40.
[23] Ziemian R D, Ziemian C W. Formulation and validation of minimum brace stiffness for systems mw of compression members[J]. Journal of Constructional Steel Research, 2017, 129:263-275.
[1] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[2] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124.
[3] 刘兴旺, 童根树, 李瑛, 胡焕, 陈东. 深基坑组合型钢支撑梁稳定性分析[J]. 工程力学, 2018, 35(4): 200-207,218.
[4] 李鹏飞, 朱其志, 顾水涛, 倪涛. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41-48.
[5] 樊鹏玄, 陈务军, 赵兵. 盘绕式伸展臂收纳过程理论分析与数值模拟[J]. 工程力学, 2018, 35(3): 249-256.
[6] 唐贞云, 郭珺, 洪越, 李易, 李振宝. 多自由度实时子结构试验系统稳定性分析方法[J]. 工程力学, 2018, 35(3): 22-29.
[7] 张爱林, 郭志鹏, 刘学春, 李超. 装配式建筑双槽钢组合截面梁整体稳定系数研究[J]. 工程力学, 2018, 35(2): 67-75.
[8] 郑颖人, 王乐, 孔亮, 阿比尔的. 钢材破坏条件与极限分析法在钢结构中应用探索[J]. 工程力学, 2018, 35(1): 55-65.
[9] 刘欣欣, 唐春安, 龚斌, 于庆磊. 基于DDD离心加载法的黑山铁矿西帮边坡稳定性研究[J]. 工程力学, 2018, 35(1): 191-200.
[10] 王多智, 李文亮, 支旭东. 考虑有檩体系屋面系统的网壳结构静力稳定性分析[J]. 工程力学, 2017, 34(增刊): 71-77,98.
[11] 王宇航, 吴强, 熊光亮. 不同参数下低屈服点钢剪切板耗能元件受力性能试验研究[J]. 工程力学, 2017, 34(7): 21-22.
[12] 蒲成志, 曹平, 张春阳, 章求才. 考虑时效损伤劣化的变参数非线性蠕变损伤模型[J]. 工程力学, 2017, 34(6): 17-27.
[13] 李扬, 周丽, 杨秉才. 紊流激励条件下基于随机减量法的颤振边界预测研究[J]. 工程力学, 2017, 34(6): 9-16.
[14] 潘兆东, 谭平, 周福霖. 大型结构小增益分散稳定化容错控制研究[J]. 工程力学, 2017, 34(6): 128-136.
[15] 童根树, 冯一笑, 张磊. 受弯Z形檩条畸变屈曲与整体屈曲统一分析方法[J]. 工程力学, 2017, 34(5): 116-124,131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[2] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[3] 洪越, 唐贞云, 林树潮, 李振宝. 一种新型变曲率摩擦摆力学性能的试验研究[J]. 工程力学, 2018, 35(S1): 113 -119 .
[4] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120 -125,133 .
[5] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
[6] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134 -139 .
[7] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[8] 颜王吉, 王朋朋, 孙倩, 任伟新. 基于振动响应传递比函数的系统识别研究进展[J]. 工程力学, 2018, 35(5): 1 -9,26 .
[9] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27 -35,74 .
[10] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52 -57,67 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日