工程力学 ›› 2018, Vol. 35 ›› Issue (7): 139-149.doi: 10.6052/j.issn.1000-4750.2017.03.0209

• 土木工程学科 • 上一篇    下一篇

一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法

郭影1,2, 姜忻良1, 曹东波3, 白铁钧2, 朱广轶2, 冯春4   

  1. 1. 天津大学建筑工程学院, 天津 300072;
    2. 沈阳大学建筑工程学院, 沈阳 110044;
    3. 沈阳工程学院公外部, 沈阳 110136;
    4. 中国科学院力学研究所, 北京 100190
  • 收稿日期:2017-03-17 修回日期:2017-10-24 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 郭影(1979-),女,辽宁人,副教授,博士,主要从事地下结构和岩土工程方面的研究(E-mail:guoying0829@163.com). E-mail:guoying0829@163.com
  • 作者简介:姜忻良(1951-),男,浙江人,教授,博士,博导,主要从事地下工程及结构与土相互作用的研究(E-mail:jiangxinliang@126.com);曹东波(1980-),女,辽宁人,讲师,硕士,主要从事外语教学和数值软件翻译研究(E-mail:2352052703@qq.com);白铁钧(1962-),男,辽宁人,教授,博士,主要从事工程力学方面研究(E-mail:tiejun1009@126.com);朱广轶(1962-),男,辽宁人,教授,硕士,主要从事开采沉陷与治理方面的研究(E-mail:yxj2038@163.com);冯春(1982-),男,浙江人,助理研究员,硕士,主要从事岩土力学领域数值方法的研究(E-mail:fengchun@imech.ac.cn).
  • 基金资助:
    国家青年科学基金项目(51208356);辽宁省自然科学基金指导计划项目(20170540649,20170540651);国家留学基金项目(201708210323)

A FINITE VOLUME NUMERICAL SIMULATION METHOD FOR ROCK MASS STRENGTH WEAKENING BY SEEPAGE WATER ABSORBING

GUO Ying1,2, JIANG Xin-liang1, CAO Dong-bo3, BAI Tie-jun2, ZHU Guang-yi2, FENG Chun4   

  1. 1. School of Civil Engineering, Tianjin University, Tianjin 300072, China;
    2. School of Civil Engineering, Shenyang University, Shenyang 110044, China;
    3. Public English Department, Shenyang Institute of Engineering, Shenyang 110136, China;
    4. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2017-03-17 Revised:2017-10-24 Online:2018-07-25 Published:2018-07-26

摘要: 传统的渗流数值计算方法难以较真实地描述岩石材料性能劣化和渗透性演化机制。该文提出了一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法。利用高斯散度定理采用有限体积法求解水在岩体中的渗流过程及岩体的变形破坏过程,建立了基质吸水引起岩体模量及强度弱化的理论模型及相应的数学表述。基于考虑吸水弱化算法的各向同性孔隙渗流模型,模拟了低、高两种边界流体压力下某粉砂岩试样的吸水软化过程和不同吸水时间下试样的单轴压缩过程。数值算例表明:边界流体压力越高,试样达到整体饱和状态的时间越快;渗流初期以自由水渗流填充孔隙为主,渗流后期以孔隙内自由水向基质吸水的转化为主;边界流体压力对渗流速率具有明显控制作用,但对基质吸水速度无影响;随着吸水时间的增加,试样的强度(黏聚力、内摩擦角)逐渐减小至残余值,得到的基质吸水含量随时间变化的数值解与理论解基本一致,表明了数值算法的计算精度,可以用于隧道突水、围岩稳定性等实际岩体工程问题的渗流-应力耦合效应分析。

关键词: 数值分析, 岩体, 渗流特性, 强度弱化, 有限体积法

Abstract: It is difficult to describe the deterioration mechanism and permeability evolution mechanism of rock materials by the traditional numerical method of seepage flow. A finite volume numerical method is proposed for the weakening strength of rock mass induced by seepage water absorption. The seepage process of water and the deformation and destruction process of rock mass are solved with the finite volume method by using the Gauss divergence theorem, and a theoretical model for modulus and strength of the weakening rock mass induced by the matrix suction is established and the corresponding mathematical expressions are given. Based on the isotropic pore seepage model considering a water weakening algorithm, the softening process of a powder sandstone sample and the uniaxial compression process of specimens with different water absorption time are simulated under both low and high boundary fluid pressures. The numerical examples show that the higher the pressure of boundary fluid, the faster the sample reaches the overall saturation state. In the early stage of seepage, the free water flow fills the pores, while it is dominated by the transformation from the free water in the pore to the matrix suction in the later stage. The boundary fluid pressure has obvious control effect on the flow rate, but has no effect on the water absorption speed of the matrix suction. With the increase of the absorption time, the strength (cohesion and internal friction angle) of the sample is gradually reduced to the residual value, and the matrix water absorption content obtained by using this method is basically consistent with the theoretical solution. This demonstrates the calculation precision of the numerical algorithm and that it can be used to analyze the seepage and stress coupling effect on actual rock mass engineering problems such as tunnel water breakthrough and surrounding rock stability.

Key words: numerical analysis, rock mass, seepage characteristic, strength weakening, finite volume method

中图分类号: 

  • TU452
[1] 佘诗刚, 林鹏. 中国岩石工程若干进展与挑战[J]. 岩石力学与工程学报, 2014, 33(3):433-457. She Shigang, Lin Peng. Some developments challenging issues in rock engineering field in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3):433-457. (in Chinese)
[2] She S G, Dong L J. Statistics and analysis of academic publications for development of rock mechanics in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3):442-464.
[3] Lin P, Zhou Y, Liu H Y, et al. Reinforcement design and stability analysis for large-span tailgated tunnels with irregular geometry[J]. Tunneling and Underground Space Technology, 2013, 38(9):189-204.
[4] Dafalias Y F, Manzari M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6):622-634.
[5] Li X S, Dafalias Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4):449-460.
[6] Bathe K J, Khoshgoftaar M R. Finite element free surface seepage analysis without mesh iteration[J]. International Journal for Numerical and Analytic Methods in Geo-mechanics, 1979, 3(1):13-22.
[7] Zheng H, Liu D F, Lee C F, et al. A new formulation of Signorinip's type for seepage problems with free surfaces[J]. International Journal for Numerical Methods in Engineering, 2005, 64(1):1-16.
[8] 李腊梅, 冯春. 一种非连续介质中热传导过程的数值模拟方法[J]. 工程力学, 2016, 33(1):25-31. Li Lamei, Feng Chun. A numerical silulation method for heat conduction in discontinuous media[J]. Engineering Mechanics, 2016, 33(1):25-31. (in Chinese)
[9] Hatzor Y H. Fundamentals of discrete element methods for rock engineering:theory and applications[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(8):1536-1537.
[10] Burshtein L S. Effect of moisture on the strength and deformability of sandstone[J]. Journal of Mining Science, 1969, 5(5):573-576.
[11] Dyke C G, Dobereiner L. Evaluating the strength and deform-ability of sandstone[J]. Quarterly Journal of Engineering Geology and Hydro-geology, 1991, 24(1):123-134.
[12] 赵延林. 裂隙岩体渗流-损伤-断裂锅合的理论研究和工程应用研究[D]. 长沙:中南大学, 2009:43-57. Zhao Yanlin. Coupling the of seepage-damage-fracture in fractured rock masses and its application[D]. Changsha:Central South University, 2009:43-57. (in Chinese)
[13] 黄宏伟, 车平. 泥岩遇水软化微观机理研究[J]. 同济大学学报(自然科学版), 2007, 35(7):866-870. Huang Hongwei, Che Ping. Research on micromechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science), 2007, 35(7):866-870. (in Chinese)
[14] 张永安, 李峰, 陈军. 红层泥岩水岩作用特征研究[J]. 工程地质学报, 2008, 16(1):22-26. Zhang Yongan, Li Feng, Chen Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology, 2008, 16(1):22-26. (in Chinese)
[15] 陈栋. 温湿环境下深井软岩强度软化试验研究[D]. 哈尔滨:黑龙江科技大学, 2014:80-95. Chen Dong. Experimental study on strength softening of soft rock in deep mine under temperature humidity environment[D]. Harbin:Heilongjiang University of Science and Technology, 2014:80-95. (in Chinese)
[16] 周莉, 韩朝龙, 梦祥民, 等. 砂岩单面吸水强度软化实验[J]. 黑龙江科技学院学报, 2012, 22(3):320-324+329+208. Zhou Li, Han Zhaolong, Meng Xiangmin, et al. Softening experiment on single-side absorption strength for sandstone[J]. Journal of Heilongjiang Institute of Science & Technology, 2012, 22(3):320324+329+208. (in Chinese)
[17] 赵春雷, 赵成刚, 张卫华. 饱和砂土基于相变状态的不排水本构模型[J]. 工程力学, 2015, 32(12):68-76. Zhao Chunlei, Zhao Chenggang, Zhang Weihua. An undrained constitutive model of saturated sands based on the phase transformation[J]. Engineering Mechanics, 2015, 32(12):68-76. (in Chinese)
[18] 李铮, 何川, 丁建军, 等. 矿山法城市隧道运营期排水量与水压力关系的一种预判方法[J]. 工程力学, 2017, 34(1):14-21. Li Zheng, He Chuan, Ding Jianjun, et al. A method to predict the relationship between water discharge and pressure during operational period of city tunnels constructed using the mining method[J]. Engineering Mechanics, 2017, 34(1):14-21. (in Chinese)
[19] 郝耐, 张秀莲, 王淑鹏, 等. 敦煌石窟砂岩吸水特性及力学效应试验研究[J]. 科学技术与工程, 2017, 17(12):21-26. Hao Nai, Zhang Xiulian, Wang Shupeng, et al. Experimental study on water absorption characteristic and mechanical effect of sandstone in Mogao Grottoes, Dunhuang, China[J]. Science Technology and Engineering, 2017, 17(12):21-26. (in Chinese)
[20] Itasca Consulting Group Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.0, Users Manual[R]. Minneapolis, Minnesota:Itasca Consulting Group Inc, 2005.
[21] 陆晶晶, 李承亮. 基于CDEM的高桩码头在地震作用下破坏模式数值模拟研究[C]//第十五届中国海洋工程学术讨论会论文集, 2011. Lu Jingjing, Li Chengliang. Numerical Simulation Research on CDEM high pile wharf damage in the earthquake mode[C]//The 15th China Ocean Engineering Symposium Proceedings, 2011. (in Chinese)
[22] 冯春, 李世海, 刘晓宇. 基于颗粒离散元法的连接键应变软化模型及其应用[J]. 力学学报, 2016, 48(1):76-85. Feng Chun, Li Shihai, Liu Xiaoyu. Particle-Dem based linked bar strain softening model and its application[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):76-85. (in Chinese)
[23] 冯春, 李世海, 王理想. 一种基于单元局部坐标系求解二维孔隙渗流问题的数值方法[J]. 岩土力学, 2014, 35(2):584-590. Feng Chun, Li Shihai, Wang Lixiang. A numerical method to solve pore seepage problems based on element local coordinate system[J]. Rock and Soil Mechanics, 2014, 35(2):584-590. (in Chinese)
[24] 李勇. 岩质边坡动力放大系数及近似计算方法的研究[D]. 成都:西南交通大学, 2013:36-47. Ling Yong. The study of the dynamic magnification factor of the rock slope and approximate calculation method[D]. Chengdu:Southwest Jiaotong University, 2013:36-47. (in Chinese)
[25] Feng C, Li S H, Liu X Y, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1):26-35.
[1] 李鹏飞, 朱其志, 顾水涛, 倪涛. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41-48.
[2] 王勇, 段亚昆, 张亚军, 袁广林, 王腾焱, 吕俊利. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3): 65-78.
[3] 黄景琦, 杜修力, 马超, 赵密, 刘晶波, 金浏. 岩石三维强度准则的研究[J]. 工程力学, 2018, 35(3): 30-40.
[4] 王晓玲, 李瑞金, 敖雪菲, 邓韶辉. 水电工程大坝基岩三维随机裂隙岩体灌浆数值模拟[J]. 工程力学, 2018, 35(1): 148-159.
[5] 崔圣华, 裴向军, 黄润秋, 孟祥瑞, 朱凌. 团块缺陷结构对岩石静动力学特性影响的数值模拟分析[J]. 工程力学, 2018, 35(1): 88-97.
[6] 白雪, 史宝军, 贺磊, 杨廷毅. 头/盘界面均匀化Reynolds方程及其高效数值求解[J]. 工程力学, 2017, 34(8): 25-30,50.
[7] 范栋浩, 杜咏, 盛红梅. 高温下张弦梁结构力学特征解析解[J]. 工程力学, 2016, 33(4): 195-204.
[8] 王勇, 王腾焱, 袁广林, 安晓莉, 董毓利. 基于不同混凝土本构模型的混凝土双向板火灾行为分析[J]. 工程力学, 2016, 33(11): 208-219.
[9] 吴丽丽, 李佳蔚, 邢瑞娇, 安丽佩. 钢板-混凝土组合板抗剪承载性能的试验研究与数值分析[J]. 工程力学, 2016, 33(10): 173-182.
[10] 李小珍, 王聪, 肖林, 卫星, 徐勋. 斜拉桥钢-混凝土结合梁的受力性能试验研究[J]. 工程力学, 2015, 32(9): 191-199.
[11] 于婧, 刘小军, 邓明科. 带施工缝RC框架结构抗震性能的数值研究[J]. 工程力学, 2015, 32(8): 190-200.
[12] 惠存, 曹万林, 王元清, 王斌. 底部加强型工字形截面钢管混凝土柱抗震性能数值分析[J]. 工程力学, 2015, 32(7): 88-94.
[13] 王先铁, 马尤苏夫, 苏明周. 方钢管混凝土框架-薄钢板剪力墙边框柱刚度研究[J]. 工程力学, 2015, 32(6): 146-154,170.
[14] 倪海江,徐卫亚,石安池,徐建荣,吉华. 基于离散元的柱状节理岩体等效弹性模量尺寸效应研究[J]. 工程力学, 2015, 32(3): 90-96.
[15] 胡亚元,马攀. 二维堤坝管涌的数值模拟研究[J]. 工程力学, 2015, 32(3): 110-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[2] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47 -54 .
[3] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[4] 洪越, 唐贞云, 林树潮, 李振宝. 一种新型变曲率摩擦摆力学性能的试验研究[J]. 工程力学, 2018, 35(S1): 113 -119 .
[5] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
[6] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134 -139 .
[7] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[8] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27 -35,74 .
[9] 王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58 -67 .
[10] 范重, 刘云博, 王祥臻, 吴徽, 王义华. 连梁骨架曲线与滞回特性研究[J]. 工程力学, 2018, 35(6): 68 -77,87 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日