工程力学 ›› 2018, Vol. 35 ›› Issue (7): 39-46.doi: 10.6052/j.issn.1000-4750.2017.03.0204

• 土木工程学科 • 上一篇    下一篇

具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究

徐龙河1, 王坤鹏1, 谢行思1, 李忠献2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300072
  • 收稿日期:2017-03-15 修回日期:2017-09-08 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 徐龙河(1976-),男,黑龙江人,教授,博士,博导,主要从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn). E-mail:lhxu@bjtu.edu.cn
  • 作者简介:王坤鹏(1989-),男,山东人,硕士生,主要从事结构抗震研究(E-mail:14121097@bjtu.edu.cn);谢行思(1992-),男,河北人,博士生,主要从事结构抗震研究(E-mail:15125896@bjtu.edu.cn);李忠献(1961-),男,安徽人,长江学者特聘教授,博士,博导,从事工程结构抗震抗爆、减灾控制与健康监测研究(E-mail:zxli@tju.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)

STUDY ON HYSTERETIC MODEL AND SEISMIC PERFORMANCE OF DAMPING ENERGY DISSPATION BRACE WITH SELF-CENTERING CAPABILITY

XU Long-he1, WANG Kun-peng1, XIE Xing-si1, LI Zhong-xian2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Key Laboratory of Coast Civil Structure Safety of China Ministry of Education, Tianjin University, Tianjin 300072, China
  • Received:2017-03-15 Revised:2017-09-08 Online:2018-07-25 Published:2018-07-26

摘要: 在传统磁流体阻尼器基础上提出了一种具有复位功能的阻尼耗能支撑,对传统Bouc-Wen模型进行了改进,建立了适用于阻尼耗能支撑的恢复力计算模型,并在Simulink环境下对改进的双Bouc-Wen模型进行仿真分析,将仿真结果与支撑有限元模拟分析结果进行了对比;基于OpenSees平台,对改进的双Bouc-Wen模型进行二次开发,并对采用具有复位功能的阻尼耗能支撑和普通防屈曲支撑的9层Benchmark钢框架结构模型进行了抗震性能对比分析。结果表明,双Bouc-Wen模型仿真得到的滞回曲线与有限元模拟得出的滞回曲线吻合较好,可以很好地描述阻尼支撑旗形滞回特性,具有复位功能的阻尼支撑可有效减小钢结构的最大层间位移及震后残余变形,阻尼耗能支撑结构具备良好的可恢复性。

关键词: 自复位性能, Bouc-Wen模型, 滞回特性, 抗震性能, 残余变形

Abstract: On the basis of a traditional magnetorheological (MR) damper, a novel damping energy dissipation brace with self-centering capability is developed. A restoring force calculation model, the improved double Bouc-Wen model, is established to portray the hysteretic behaviors of the damping energy dissipation brace by improving the traditional Bouc-Wen model, which is simulated in Simulink environment, and the simulation results are compared with the finite element analysis results. The secondary development program of the improved double Bouc-Wen model is carried out based on OpenSees platform, and using a 9-story benchmark steel frame structure as a numerical example, the comparisons of the seismic performances between a structure with the damping energy dissipation braces and a structure with buckling restrained braces (BRBs) are conducted. The hysteretic curves obtained from the double Bouc-Wen model agree well with those obtained from the finite element simulation, and the flag-shaped hysteretic behaviors of the brace can be accurately portrayed by the proposed improved double Bouc-Wen model. The maximum interstory drift and residual deformation of a steel frame structure after earthquakes are effectively reduced, so that the structure with damping energy dissipation brace exhibits a good recovery performance.

Key words: self-centering performance, Bouc-Wen model, hysteretic behavior, seismic performance, residual deformation

中图分类号: 

  • TU352.1
[1] Asgarian B, Amirhesari N. A comparison of dynamic nonlinear behavior of ordinary and buckling restrained braced frames subjected to strong ground motion[J]. The Structural Design of Tall and Special Buildings, 2008, 17(2):367-386.
[2] 周云, 钱洪涛, 褚洪民, 等. 新型防屈曲耗能支撑设计原理与性能研究[J]. 土木工程学报, 2009, 42(4):64-71. Zhou Yun, Qian Hongtao, Chu Hongmin, et al. A study on the design principle and performance of a new type of buckling-restrained brace[J]. China Civil Engineering Journal, 2009, 42(4):64-71. (in Chinese)
[3] Ma H W, Cho C. Feasibility study on a super-elastic SMA damper with re-centering capability[J]. Materials Science and Engineering, 2008, 473(1-2):290-296.
[4] Ma H W, Michael C H Y. Modeling of a self-centering damper and its application in structural control[J]. Journal of Constructional Steel Research, 2011, 67(4):656-666.
[5] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
[6] Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-centering energy dissipative steel braces[J]. Journal of Structural Engineering, ASCE, 2008, 134(1):108-120.
[7] Miller D J, Fahnestock L A, Eatherton M R. Self-centering buckling-restrained braces for advanced seismic performance[C]//Proceedings of the 2011 Structures Congress, Las Vegas, USA:ASCE, 2011:960-970.
[8] Miller D J, Fahnestock L A, Eatherton M R. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace[J]. Engineering Structures, 2012, 40:288-298.
[9] Xu L H, Fan X W, Lu D C, et al. Hysteretic behavior studies of self-centering energy dissipation bracing system[J]. Steel and Composite Structures, 2016, 20(6):1205-1219.
[10] Xu L H, Fan X W, Lu D C, et al. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
[11] Xu L H, Fan X W, Li Z X. Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs[J]. Earthquake Engineering and Structural Dynamics, 2016, 46(7):1065-1080.
[12] 徐龙河, 樊晓伟, 代长顺, 等. 预压弹簧自恢复耗能支撑受力性能分析与试验研究撑的约束比取值研究[J]. 建筑结构学报, 2016, 37(9):142-148. Xu Longhe, Fan Xiaowei, Dai Changshun, et al. Mechanical behavior analysis and experimental study on pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2016, 37(9):142-148. (in Chinese)
[13] 丁阳, 张路, 姚宇飞, 等. 阻尼力双向调节磁流变阻尼器的性能测试与滞回模型[J]. 工程力学, 2010, 27(2):228-234. Ding Yang, Zhang Lu, Xiao Yufei, et al. Performance test and hysteresis model of MR damper with bidirectional adjusting damping force[J]. Engineering Mechanics, 2010, 27(2):228-234. (in Chinese)
[14] 张路. 新型磁流变阻尼器及大跨度空间结构半主动控制体系研究[D]. 天津:天津大学, 2010:15-20. Zhang Lu. New MR dampers and semi-active control system of long-span spatial structures[D]. Tianjin:Tianjin University, 2010:15-20. (in Chinese)
[15] Weber F. Bouc-Wen model-based real-time force tracking scheme for MR dampers[J]. Smart Materials and Structures, 2013, 22(4):045012.
[16] 高向宇, 张慧, 杜海燕, 等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学, 2011, 28(6):19-28. Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Study on characterization and modeling of buckling-restrained brace[J]. Engineering Mechanics, 2011, 28(6):19-28. (in Chinese)
[17] 吴从晓, 周云, 邓雪松. 钢铅粘弹性阻尼器试验研究[J]. 工程力学, 2012, 29(3):150-155. Wu Congxiao, Zhou Yun, Deng Xuesong. Experimental study on steel-lead viscoelastic damper[J]. Engineering Mechanics, 2012, 29(3):150-155. (in Chinese)
[1] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[2] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[3] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[4] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[5] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[6] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[7] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[8] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[9] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[10] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[11] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
[12] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
[13] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[14] 王妮, 陈宗平, 陈宇良. 型钢混凝土L形柱空间角节点抗震性能分析[J]. 工程力学, 2018, 35(5): 180-192.
[15] 孙小云, 韩建平, 党育, 周颖. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5): 193-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[2] 谢楠, 赵凯, 胡杭, 潘明栋. 高大模板支架的容错优化设计研究[J]. 工程力学, 2018, 35(S1): 101 -106 .
[3] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47 -54 .
[4] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[5] 洪越, 唐贞云, 林树潮, 李振宝. 一种新型变曲率摩擦摆力学性能的试验研究[J]. 工程力学, 2018, 35(S1): 113 -119 .
[6] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120 -125,133 .
[7] 郑欣, 刘宇斌, 陈璞, 沈峰, 张圣君, 傅向荣. 基于弯扭耦合理论的颤振频率计算方法[J]. 工程力学, 2018, 35(S1): 1 -5,12 .
[8] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
[9] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[10] 颜王吉, 王朋朋, 孙倩, 任伟新. 基于振动响应传递比函数的系统识别研究进展[J]. 工程力学, 2018, 35(5): 1 -9,26 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日