工程力学 ›› 2018, Vol. 35 ›› Issue (7): 104-116.doi: 10.6052/j.issn.1000-4750.2017.03.0200

• 土木工程学科 • 上一篇    下一篇

PC框架结构基于易损性的“强柱弱梁”设计方法研究

张耀庭, 杨力, 张江, 张诚诚   

  1. 华中科技大学土木工程与力学学院, 湖北, 武汉 430074
  • 收稿日期:2017-03-15 修回日期:2017-12-01 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 张耀庭(1965-),男,湖北人,教授,博士,主要从事预应力混凝土工程与建筑结构抗震研究(E-mail:zyt1965@mail.hust.edu.cn). E-mail:zyt1965@mail.hust.edu.cn
  • 作者简介:杨力(1991-),男,湖北人,硕士生,主要从事建筑结构抗震方面的研究(E-mail:753095423@qq.com);张江(1990-),男,湖北人,硕士生,主要从事建筑结构抗震方面的研究(E-mail:zhangjiang613@163.com);张诚诚(1993-),男,江苏人,硕士生,主要从事建筑结构抗震方面的研究(E-mail:rainzhang@hust.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51278218)

STUDY ON DESIGN METHOD OF STRONG COLUMN AND WEAK BEAM BASED ON FRAGILITY FOR PRESTRESSED CONCRETEFRAME STRUCTURES

ZHANG Yao-ting, YANG Li, ZHANG Jiang, ZHANG Cheng-cheng   

  1. Huazhong University of Science and Technology School of Civil Engineering and Mechanics, Hubei, Wuhan 430074, China
  • Received:2017-03-15 Revised:2017-12-01 Online:2018-07-25 Published:2018-07-26

摘要: 研究和震害均表明,按规范设计的钢筋混凝土框架结构很难实现"强柱弱梁"的破坏机制。当前指导我国预应力混凝土(PC)框架结构抗震设计的04规程是以01抗震规范为基础编制的,滞后于10抗震规范,因而,有必要进行PC框架结构"强柱弱梁"设计方法的研究。首先,考虑进行PC框架设计时其梁中受力钢筋预先确定的特点,提出均采用抗震等级为一级的RC框架结构"强柱弱梁"设计的方法,即:依据梁端实际抗震受弯承载力来调整其柱端弯矩的方法;其次,针对与新方法匹配的柱端弯矩增大系数的合理取值问题,依据04规程设计了抗震等级为一、二、三级的4个多层PC框架,并在OpenSees平台上对其建立非线性分析模型,建模时以框架能形成"强柱弱梁"的屈服机制为目标,在罕遇地震作用下,采用除框架底层柱下端外其他柱截面的纵筋均不屈服的梁铰机制,对每个框架分别输入35条地震波进行罕遇地震作用下的响应分析,并对柱端弯矩增大系数的需求值进行统计,结果表明:PC框架结构边节点和中节点处的柱端弯矩增大系数,在抗震等级为三级时可分别取1.05、1.0,二级时分别取1.25、1.15,一级时分别取1.3、1.2;最后,按新方法对抗震等级为二、三级的两个PC框架进行重新设计,并对其进行基于IDA的易损性分析,验证了本文所提出的设计方法的实用性。

关键词: 预应力混凝土框架, 强柱弱梁, 柱端弯矩调整系数, 抗震性能评估, 易损性分析

Abstract: According to the related researches and analyzes of earthquake damage, the RC frame structure designed by current standard is difficult to achieve strong column-weak beam mechanism. The Chinese specification for aseismic design of PC structures (04) based on the aseismic code (01) lags behind the aseismic code (10). The study on PC strong column-weak beam mechanism is necessary. Firstly, a new method that MAFC (the moment amplification factor of column ends) for each aseismic level of PC frame structure was adjusted according to the actual beam ends bending capacity. Secondly, to define the reasonable value of MAFC, four multi-layer PC frame structures at 1st, 2nd and 3rd anti-seismic grade were designed according to the aseismic design of PC structures (04). 4 nonlinear analysis models were established in OpenSees, which implies that the stress of longitudinal bars of columns end sections except the first floor is below the yield stress under strong earthquake excitation. 35 seismic waves were selected for each frame to analyze the earthquake response, and the statistical analyses of MAFC demand were carried out. The results show that the PC frame MAFC for interior and exterior joints are 1.05 and 1.0 respectively at 3rd anti-seismic grade, 1.25 and 1.15 respectively at 2nd anti-seismic grade, 1.3 and 1.2 respectively at 1st anti-seismic grade. Finally, two PC frame structures were redesigned according to the new method to verify the practicability of the new design method and MAFC by IDA-based vulnerability analysis.

Key words: prestressed concrete frame, strong column and weak beam, moment amplification factor of column end, seismic performance evaluation, vulnerability analysis

中图分类号: 

  • TU378.4
[1] Paulay T. Developments in the design of ductile reinforced concrete frames[J]. Bulletin of the New Zealand National Society For Earthquake Engineering, 1979, 12(1):35-48.
[2] Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings[M]. Canada:Wiley-Interscience, 1992.
[3] Zahid M Z A M, Robert D, Shahrin F. An evaluation of overstrength factor of seismic designed low rise RC buildings[J]. Procedia Engineering, 2013, 53(7):48-51
[4] Taïeb B, Sofiane B. Accounting for ductility and over strength in seismic design of reinforced concrete structures[C]//Proceedings of the 9th International Conference on Structural Dynamics. Porto Portugal, EURODYN, 2014:311-314.
[5] 马宏旺, 陈晓宝. 钢筋混凝土框架结构强柱弱梁设计的概率分析[J]. 上海交通大学学报, 2005, 39(5):723-726. Ma Hongwang, Chen Xiaobao. Probability analysis for strong column-weak beam design of reinforced concrete frames[J]. Journal of Shanghai Jiaotong University, 2005, 39(5):723-726. (in Chinese)
[6] 张耀庭, 卢怡思, 杜晓菊, 卢杰志. 柱端弯矩增大系数对PC框架结构抗震性能影响的研究[J]. 湖南大学学报(自然科学版), 2014, 41(11):37-47. Zhang Yaoting, Lu Yisi, Du Xiaoju, Lu Jiezhi. Study on the effect of moment magnifying coefficient at column ends on the seismic capacity of prestressed concrete frame[J]. Journal of Hunan University (Natural Sciences), 2014, 41(11):37-47. (in Chinese)
[7] 张睿. 基于梁铰机制的柱端弯矩增大系数取值及影响因素研究[D]. 重庆:重庆大学, 2012. Zhang Rui. Research on influence and calculation for moment magnifying coefficients at column ends based on beam hinge mechanism[D]. Chongqing:Chongqing University, 2012. (in Chinese)
[8] 叶列平, 马千里, 缪志伟. 钢筋混凝土框架结构强柱弱梁设计方法的研究[J]. 工程力学, 2010, 27(12):102-113. Ye Lieping, Ma Qianli, Miao Zhiwei. Study on weak beam-strong column design method of RC frame structures[J]. Engineering Mechanics, 2010, 27(12):102-113. (in Chinese)
[9] Dooley K L, Bracci J M. Seismic evaluation of column-to-beam strength ratios in reinforced concrete frames[J]. Structural Journal, 2001, 98(6):843-851.
[10] 王鑫. 既有预应力混凝土框架结构抗震能力评估及相关问题研究[D]. 南京:东南大学, 2010. Wang Xin. Research on seismic capacity evaluation of existing prestressed concrete frame structure and relevant issues[D]. Nanjin:Southeast University, 2010. (in Chinese)
[11] 潘其健. 预制预应力混凝土框架结构抗震能力的试验研究[D]. 南京:东南大学, 2006. Pan Qijian. Experimental study on seismic capacity of precast prestressed concrete frame structures[D]. Nanjin:Southeast University, 2006. (in Chinese)
[12] 冯健, 施明征. 预应力混凝土框架预应力筋的合理配置[J]. 建筑技术开发, 1998, 25(3):14-16. Feng Jian,Shi Mingzheng. Reasonable Configuration of Prestressed Reinforcement in PC Structures[J]. Building Technique Development, 1998, 25(3):14-16. (in Chinese)
[13] 杨红, 孙永炜, 张睿, 等. 基于梁铰机制的柱端弯矩增强措施研究[J]. 土木工程学报, 2014, 47(04):64-74. Yang Hong, Sun Yongwei, Zhang Rui, et al. Study on the moment amplification measures of column ends based on the beam sidesway mechanism[J]. China Civil Engineering Journal, 2014, 47(04):64-74. (in Chinese)
[14] 张瀑, 鲁兆红, 淡浩. 预应力混凝土框架结构实用设计方法[M]. 北京:中国建筑工业出版社, 2012. Zhang Pu, Lu Zhaohong, Dan Hao. The practical design method of PC structures[M]. Beijing:China Architecture and Building Press, 2012. (in Chinese)
[15] 郑文忠, 王英. 预应力混凝土房屋结构设计统一方法与实例[M]. 哈尔滨:黑龙江科学技术出版社, 1998. Zheng Wenzhong, Wang Ying. Unified structure design method and example of PC building[M]. Harbin:Heilongjiang Science and Technology Press, 1998. (in Chinese)
[16] 孟少平. 预应力混凝土框架结构抗震能力及设计方法的研究[D]. 南京:东南大学, 2000. Meng Shaoping. Study on seismic capacity and design method of prestressed concrete frame structures[D]. Nanjin:Southeast University, 2000. (in Chinese)
[17] B1akeley R W G, Park R. Prestressed concrete sections with cyclic flexures[J]. Journal of the Structural Division, ASCE, 1973, 99(8):1717-1742.
[18] 王东超. 罕遇地震作用下预应力混凝土框架结构抗震性能分析[D]. 重庆:重庆大学, 2010. Wang Dongchao. Analysis on seismic performance of prestressed concrete frame structures under rare earthquake[D]. Chongqing:Chongqing University, 2010(in Chinese)
[19] 杜晓菊, 张耀庭, 刘昌芳. 基于纤维模型的钢筋混凝土构件的数值分析[J]. 地震工程与工程振动, 2014, 34(增刊1):548-554. Du xiaoju, Zhang Yaoting, Liu Changfang. The numerical analysis of reinforced concrete members based on fiber model[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(Suppl1):548-554. (in Chinese)
[20] Vamvatsikos D, Fragiadakis M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty[J]. Earthquake Engineering and Structural Dynamics. 2010, 39(39):141-163.
[21] 周奎, 林杰, 祝文. 基于增量动力分析(IDA)方法的地震易损性工程实例分析[J]. 地震工程与工程振动, 2016, 36(1):135-140. Zhou Kui, Lin Jie, Zhu Wenin. Case study of seismic fragility analysis based on the incremental dynamic analysis (IDA) method[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(1):135-140. (in Chinese)
[22] Bertero V V. Strength and deformation capacities of buildings under extreme environments[J]. Structural engineering and structural mechanics, 1977, 53(1):29-79.
[23] HAZUS99. Earthquake Loss Estimation Methodology:User's Manual[M]. Washington, DC, USA:Federal Emergency Management Agency, 1999.
[1] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[2] 白久林, 金双双, 欧进萍. 钢筋混凝土框架结构强柱弱梁整体失效模式可控设计[J]. 工程力学, 2017, 34(8): 51-59.
[3] 卢杰志, 张耀庭, 郭宗明, 王晓伟. 多层预应力混凝土框架结构基于IDA的地震易损性分析[J]. 工程力学, 2017, 34(6): 109-119.
[4] 梁丹, 梁兴文. RC框架结构抗地震倒塌性能评估的简化方法[J]. 工程力学, 2017, 34(2): 102-110.
[5] 张耀庭, 张江, 杨力. 预应力度对预应力混凝土框架结构抗震性能影响研究[J]. 工程力学, 2017, 34(2): 129-136.
[6] 成虎, 李宏男, 王东升, 李超, 付兴. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017, 34(12): 48-58.
[7] 罗文文, 李英民, 韩军. 基于全概率PBEE方法的RC框架结构地震损失分析[J]. 工程力学, 2016, 33(9): 186-194.
[8] 缪志伟, 宋前恩, 李爱群. 减震设计与抗震设计RC框架结构抗地震倒塌能力对比[J]. 工程力学, 2016, 33(8): 24-31.
[9] 白久林, 欧进萍. 基于耐震时程法的钢筋混凝土框架结构抗震性能评估[J]. 工程力学, 2016, 33(10): 86-96.
[10] 李立峰, 吴文朋, 胡思聪, 刘守苗. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1): 163-170.
[11] 宋良龙, 郭彤. 腹板摩擦式自定心预应力混凝土框架的抗震性能研究[J]. 工程力学, 2014, 31(12): 47-56.
[12] 吴巧云, 朱宏平, 樊剑. 基于性能的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2012, 29(9): 117-124.
[13] 施炜, 陆新征, 叶列平, 曲哲. 建筑结构倒塌分析的单自由度模型[J]. 工程力学, 2012, 29(10): 5-12.
[14] 刘文锋, 王段. 基于位移目标的性态谱[J]. 工程力学, 2012, 29(10): 75-81.
[15] 姜绍飞;杨 博;吴兆旗. 基于易损性分析的桁架桥传感器布设方法[J]. 工程力学, 2010, 27(增刊Ⅱ): 263-265,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[2] 谢楠, 赵凯, 胡杭, 潘明栋. 高大模板支架的容错优化设计研究[J]. 工程力学, 2018, 35(S1): 101 -106 .
[3] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47 -54 .
[4] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[5] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
[6] 巴振宁, 彭琳, 梁建文, 黄棣旸. 任意多个凸起地形对平面P波的散射[J]. 工程力学, 2018, 35(7): 7 -17,23 .
[7] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27 -35,74 .
[8] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105 -114 .
[9] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117 -126 .
[10] 刘祖强, 薛建阳, 韩琛, 杨青峰. 实腹式型钢混凝土T形柱抗震性能试验研究[J]. 工程力学, 2018, 35(5): 17 -26 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日