工程力学 ›› 2018, Vol. 35 ›› Issue (7): 83-93,138.doi: 10.6052/j.issn.1000-4750.2017.03.0195

• 土木工程学科 • 上一篇    下一篇

多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究

汪大洋, 韩启浩, 张永山   

  1. 广州大学土木工程学院, 广东, 广州 510006
  • 收稿日期:2017-03-14 修回日期:2017-08-01 出版日期:2018-07-25 发布日期:2018-07-26
  • 通讯作者: 韩启浩(1991-),男,江西人,博士生,主要从事钢结构抗震研究(E-mail:hanqihao06@163.com). E-mail:hanqihao06@163.com
  • 作者简介:汪大洋(1981-),男,安徽人,副教授,博士,主要从事结构减振控制研究(E-mail:wadaya2015@gzhu.edu.cn)张永山(1964-),男,黑龙江人,教授,博士,博导,主要从事结构分析与减震控制研究(E-mail:zhangys6411@163.com).
  • 基金资助:
    国家自然科学基金项目(51408140,51378135);广东省优秀青年教师项目(Yq201402);广州市科技计划项目(201510010291,201607010151)

EXPERIMENTAL AND ANALYTICAL STUDY OF COMPOSITE STEEL PLATE SHEAR WALL WITH ASSEMBLED MULTI-CONCRETE SLAB

WANG Da-yang, HAN Qi-hao, ZHANG Yong-shan   

  1. School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
  • Received:2017-03-14 Revised:2017-08-01 Online:2018-07-25 Published:2018-07-26

摘要: 对竖向拼装组合钢板剪力墙、横向拼装组合钢板剪力墙及传统组合钢板剪力墙开展拟静力试验,对比分析各试件破坏特征、滞回性能、耗能能力、刚度退化及位移延性,采用ABAQUS软件建立数值模型并针对不同拼缝宽度、螺栓距厚比和混凝土板厚度的竖向拼装组合钢板剪力墙进行了参数影响研究。结果表明:混凝土板分块布置会一定程度地降低其耗能能力和抗侧刚度,但可以减少内藏钢板对边缘框架柱产生附加弯矩的不利影响;竖向拼装组合钢板剪力墙是一种抗震性能更为优越的抗侧力构件,竖向拼装组合钢板剪力墙的耗能能力是横向拼装组合钢板剪力墙的1.3倍,且竖向拼装组合钢板剪力墙刚度退化相对缓慢;为保证组合钢板剪力墙具有较好的抗侧能力,螺栓距厚比为100和125时,其拼缝宽度分别不宜大于48 mm和72 mm;混凝土板约束刚度足够情况下,螺栓距厚比不宜大于125。

关键词: 组合钢板剪力墙, 多块混凝土板, 拼装方式, 拟静力试验, 有限元分析, 拼缝宽度, 抗震性能

Abstract: The quasi-static test was carried out on composite steel plate shear wall with vertical assembling mode (V-CSPSW), composite steel plate shear wall with horizontal assembling mode (H-CSPSW) and traditional composite steel plate shear wall (CSPSW). The failure characteristic, hysteretic behavior, energy dissipation capability, displacement ductility, stiffness degradation and displacement ductility of the composite walls were analyzed. The numerical model was established by using ABAQUS, and a parametric study was then performed to study the effects of gap width, bolt spacing-to-steel thickness ratio and concrete slab thickness. The results show that the CSPSW assembled by multi-concrete slabs has lower lateral stiffness and energy dissipation capacity, but it can reduce the harmful effects of additional moment generated by the steel plate on frame columns. V-CSPSW is a lateral force resisting member possessing superior seismic performance, its energy dissipation capacity is 1.3 times of that the H-CSPSW has and its stiffness degradation is slower. In order to ensure the composite steel plate shear wall has good lateral resisting capacity, the gap width should be less than 48 mm and 72 mm if the bolt spacing-to-steel thickness ratio is 100 and 125, respectively. The bolt spacing-to-steel thickness ratio of the V-CSPSW should be less than 125 if the concrete slab possesses enough restraint stiffness.

Key words: composite steel plate shear wall, multi-concrete slab, assembling mode, quasi-static test, finite element analysis, gap width, seismic behavior

中图分类号: 

  • TU398+.2
[1] JGJ/T 380-2015, 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社, 2016. JGJ/T 380-2015, Technical specification for steel plate shear walls[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[2] 郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13. Hao Jiping, Sun Xiaoling, Xue Qiang, et al. Research and applications of prefabricated steel structure building systems[J]. Engineering Mechanics, 2017, 34(1):1-13. (in Chinese)
[3] Dey S, Bhowmick A K. Seismic performance of composite plate shear walls[J]. Structures, 2016, 6:59-72.
[4] Rahai A, Hatami F. Evaluation of composite shear wall behavior under cyclic loadings[J]. Journal of Constructional Steel Research, 2009, 65(7):1528-1537.
[5] Arabzadeh A, Soltani M, Ayazi A. Experimental investigation of composite shear walls under shear loadings[J]. Thin Walled Structures, 2011, 49(7):842-854.
[6] Guo L H, Li R, Rong Q, et al. Cyclic behavior of SPSW and CSPSW in composite frame[J]. Thin Walled Structures, 2012, 51:39-52.
[7] 李国强, 张晓光, 沈祖炎. 钢板外包混凝土剪力墙抗剪滞回性能试验研究[J]. 工业建筑, 1995, 25(6):32-35. Li Guoqiang, Zhang Xiaoguang, Shen Zuyan. Experimental study on hysteretic behavior of concrete-incased steel plate shear walls[J]. Industrial Construction, 1995, 25(6):32-35. (in Chinese)
[8] Zhao Q H. Experimental and analytical studies of cyclic behavior of steel and composite shear wall systems[D]. Berkeley:University of California, 2006.
[9] Zhao Q H, Astaneh-Asl A. Cyclic behavior of traditional and innovative composite shear wall[J]. Journal of Structural Engineering(ASCE), 2004, 130(2):271-284.
[10] Hitaka T, Matsui C, Tsuda K, et al. Elastic-plastic behavior of building steel frame incorporation steel bearing wall with slits[J]. Journal of Structural & Construction Engineering, 2000, 65(543):153-160.
[11] Hitaka T, Matsui C. Experimental study on steel shear wall with slits[J]. Journal of Structural Engineering. 2003, 129(5):586-595.
[12] 郭彦林, 董全利, 周明, 等. 防屈曲钢板剪力墙滞回性能理论与试验研究[J]. 建筑结构学报, 2009, 30(1):31-39. Guo Yanlin, Dong Quanli, Zhou Ming, et al. Tests and analysis on hysteretic behavior of buckling-restrained steel plate shear wall[J]. Journal of Building Structures, 2009, 30(1):31-39. (in Chinese)
[13] 郭彦林, 周明, 董全利. 防屈曲钢板剪力墙弹塑性抗剪极限承载力与滞回性能研究[J]. 工程力学, 2009, 26(2):108-114. Guo Yanlin, Zhou Ming, Dong Quanli. Hysterestic behavior of buckling-restrained steel plate shear wall[J]. Engineering Mechanics, 2009, 26(2):108-114. (in Chinese)
[14] 郭彦林, 周明, 董全利, 等. 三类钢板剪力墙结构试验研究[J]. 建筑结构学报, 2011, 32(1):17-29. Guo Yanlin, Zhou Ming, Dong Quanli, et al. Experimental study on three types of steel plate shear walls under cyclic loading[J]. Journal of Building Structures, 2011, 32(1):17-29. (in Chinese)
[15] 郭兰慧, 戎芹, 马欣伯, 等. 两边连接钢板-混凝土组合剪力墙抗剪性能试验研究及有限元分析[J]. 建筑结构学报, 2012, 33(6):59-68. Guo Lanhui, Rong Qin, Ma Xinbo, et al. Experimental and analytical study of composite steel plate shear walls connected to frame beams only[J]. Journal of Building Structures, 2012, 33(6):59-68. (in Chinese)
[16] 马欣伯. 两边连接钢板剪力墙及组合剪力墙抗震性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. Ma Xinbo. Seismic behavior of steel plate shear walls and composite shear walls with two-side connections[D]. Harbin:Harbin Institute of Technology, 2009. (in Chinese)
[17] Guo L H, Rong Q, Ma X B. Analysis of composite steel plate shear walls connected with frame beams only[J]. Structures and Buildings, 2013, 166(9):507-518.
[18] Guo L H, Ma X B, Li R. Experimental research on seismic behavior of C-SPSWs connected to frame beams[J]. Earthquake Engineering and Engineering Vibration, 2011, 10(1):65-73.
[19] Guo L H, Rong Q, Qu B. Testing of steel plate shear walls with composite columns and infill plates connected to beams only[J]. Engineering Structures, 2017, 136:165-179.
[20] 陆烨, 李国强, 孙飞飞. I形大高宽比屈曲约束钢板剪力墙的试验和理论研究[J]. 土木工程学报, 2011, 44(10):45-52. Lu Ye, LI Guoqiang, Sun Feifei. Experimental and theoretical study on slim I-shape buckling-restrained steel plate shear walls[J]. China Civil Engineering Journal, 2011, 44(10):45-52. (in Chinese)
[21] 刘青, 李国强, 陆烨. 内嵌屈曲约束钢板剪力墙钢框架的性能参量及计算方法[J]. 工程力学, 2016, 33(10):105-115. Liu Qing, Li Guoqiang, Lu Ye. Mechanical properties and calculation of the buckling restrained steel plate shear walls embedded steel frame[J]. Engineering Mechanics, 2016, 33(10):105-115. (in Chinese)
[22] 郭彦林, 董全利, 周明. 防屈曲钢板剪力墙弹性性能及混凝土盖板约束刚度研究[J]. 建筑结构学报, 2009, 30(1):40-47. Guo Yanlin, Dong Quanli, Zhou Ming. Elastic behavior and minimum restraining stiffness of buckling restrained steel plate shear wall[J]. Journal of Building Structures, 2009, 30(1):40-47. (in Chinese)
[1] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[2] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[3] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[4] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[5] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[6] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[7] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[8] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[9] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[10] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[11] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[12] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46.
[13] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[14] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
[15] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18 -23 .
[2] 贾明明, 周洲, 吕大刚, 杨宁. 摇摆桁架-BRB-钢框架体系地震失效模式与抗震性能分析[J]. 工程力学, 2018, 35(S1): 73 -79 .
[3] 谢楠, 赵凯, 胡杭, 潘明栋. 高大模板支架的容错优化设计研究[J]. 工程力学, 2018, 35(S1): 101 -106 .
[4] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47 -54 .
[5] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55 -61 .
[6] 洪越, 唐贞云, 林树潮, 李振宝. 一种新型变曲率摩擦摆力学性能的试验研究[J]. 工程力学, 2018, 35(S1): 113 -119 .
[7] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140 -144 .
[8] 赵保庆, 王启明, 李志恒, 雷政. FAST圈梁支承结构性能理论与实验研究[J]. 工程力学, 2018, 35(S1): 200 -204,211 .
[9] 姜志琳, 赵均海, 吕美彤, 张磊. 基于线性强化模型的双层厚壁圆筒极限内压统一解[J]. 工程力学, 2018, 35(S1): 6 -12 .
[10] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日