工程力学 ›› 2018, Vol. 35 ›› Issue (2): 249-256.doi: 10.6052/j.issn.1000-4750.2016.10.0768

• 其他工程学科 • 上一篇    

基于曲面涡格法的柔性飞机静气动弹性分析

刘燚1, 杨澜2, 谢长川2   

  1. 1. 北京机电工程研究所, 北京 100074;
    2. 北京航空航天大学航空科学与工程学院, 北京 100191
  • 收稿日期:2016-10-08 修回日期:2017-11-14 出版日期:2018-02-25 发布日期:2018-02-25
  • 通讯作者: 谢长川(1976―),男,陕西人,讲师,博士后,主要从事气动弹性力学与飞行器设计研究(E-mail:xiechangc@163.com). E-mail:xiechangc@163.com
  • 作者简介:刘燚(1988―),女,陕西人,工程师,博士,主要从事气动弹性力学及空气动力学研究(E-mail:liuyibuaa@126.com);杨澜(1993―),女,陕西人,博士生,主要从事气动弹性力学及飞行器设计研究(E-mail:yanglanby@buaa.edu.cn).

STUDY ON THE STATIC AEROELASTICITY FOR FLEXIBLE AIRCRAT BASED ON NON-PLANAR VORTEX LATTICE METHOD

LIU Yi1, YANG Lan2, XIE Chang-chuan2   

  1. 1. Beijing Institute of Mechanical and Electrical Engineering, Beijing 100074, China;
    2. School of Aeronautics Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2016-10-08 Revised:2017-11-14 Online:2018-02-25 Published:2018-02-25

摘要: 该文采用曲面涡格法对柔性飞机进行曲面气动力建模,并进一步考察了可压缩情况下曲面涡格法载荷的计算精度,满足了柔性飞机曲面气动载荷计算的需求。在气动载荷计算的基础上结合结构几何非线性分析与插值计算,完成了柔性飞机几何非线性静气动弹性分析。分析结果表明,曲面涡格法在可压缩情况下载荷计算精度较好且气动力曲面建模优势明显,可用于工程复杂模型的曲面气动力计算。与传统线性静气动弹性计算相比,考虑结构几何非线性及气动力曲面效应的非线性静气动弹性分析更符合真实物理情景,载荷计算更为准确,结构变形结果更为可靠。

关键词: 柔性飞机, 曲面涡格法, 几何非线性, 可压缩性, 静气动弹性

Abstract: The non-planar vortex lattice method is used to accomplish the aerodynamic modeling for flexible aircraft. Its applicability in compressible aerodynamic computation is investigated. Furthermore, the structural geometrically nonlinear analysis and the surface spline interpolation are combined with non-planar aerodynamic computation to establish the geometrically nonlinear aeroelastic analysis for very flexible aircrafts. A complex engineering model is selected as an example to conduct the non-planar aerodynamic computation and nonlinear static aeroelastic analysis. The analysis results indicate that the non-planar vortex lattice method can well accomplish the aerodynamic modeling considering the non-planar effects even under a compressible occasion. The geometrically nonlinear static aeroelastic analysis is more reliable and more accurate.

Key words: flexible aircraft, non-planar vortex lattice, geometric nonlinearity, compressibiliey, static aeroelasticity

中图分类号: 

  • V211.47
[1] 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 9-10. Yang Chao, Wu Zhigang, Wan Zhiqiang, et al, Aircraft aeroelasticity theory [M]. Beijing: Beihang University Press, 2011: 9-10. (in Chinese)
[2] Patil M J, Hodges D H, Cesnik C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760.
[3] Waszak M R, Schmidt D K. Flight dynamics of aeroelastic vehicles [J]. Journal of Aircraft, 1988, 25(6): 563-571.
[4] Xie Changchuan, Wu Zhigang, Yang Chao. Aeroelastic analysis of flexible large aspect ratio wing [J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12): 1087-1090.
[5] Patil M J, Hodges D H, Cesnik C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760.
[6] Sotoudeh Z, Hodges D H, Chang C S. Validation studies for aeroelastic trim and stability of highly flexible aircraft [J]. Journal of Aircraft, 2010, 47(4): 1240-1247.
[7] Peters D A. Finite-state airloads modeling with compressibility and unsteady free-stream [C]// Proceedings of the Sixth International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems, 1995: 8-10.
[8] Tang D M, Dowell E H. Comments on the ONERA stall aerodynamic model and its impact on aeroelastic stability[J]. Journal of Fluid and Structures, 1996, 10(4): 353-366.
[9] Patil M J, Hodges D H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings [J]. Journal of Fluids and Structures, 2004, 19(7): 905-915.
[10] Yang C, Wang L B, Xie C C, et al. Aeroelastic trim and flight loads analysis of flexible aircraft with large deformations [J]. Science China Technological Sciences, 2012, 55(10): 2700-2711.
[11] Vest M S, Katz J. Unsteady aerodynamic model of flapping wings [J]. AIAA Journal, 1996, 34(7): 1435-1440.
[12] 刘燚, 谢长川, 王立波, 胡锐, 杨超. 柔性飞机大变形曲面气动力计算及配平分析[J]. 工程力学, 2015, 32(10): 239-249. Liu Yi, Xie Changchuan, Wang Libo, Hu Rui, Yang Chao. Nonplanar aerodynamic computation and trim analysis under large deflection of flexible aircraft [J]. Engineering Mechanics, 2015, 32(10): 239-249. (in Chinese)
[13] 谢长川, 胡锐, 王斐, 刘燚, 常楠. 大展弦比柔性机翼气动弹性风洞模型设计与试验验证[J] 工程力学, 2016, 33(11): 249-256. Xie Changchuan, Hu Rui, Wang Fei, Liu Yi, Chang Nan. Aeroelastic wind tunnel test model design and experiment on very flexible high-aspect-ratio wings [J]. Engineering Mechanics, 2016, 33(11): 249-256. (in Chinese)
[14] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 第2版. 北京: 清华大学出版社, 1997: 531-553. Wang Xucheng, Shao Min. Theory and numerical methods of finite element method [M]. 2nd ed. Beijing: Tsinghua University Press, 1997: 531-553. (in Chinese)
[15] 宋天霞, 郭建生, 杨元明. 非线性固体计算力学[M]. 武汉: 华中科技大学出版社, 1996: 18. Song Tianxia, Guo Jiansheng, Yang Yuanming. Nonlinear structure finite element computation [M]. Wuhan: Huazhong University of Science and Technology Press, 1996: 18. (in Chinese)
[16] 钱翼稷. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2004: 153-169. Qian Yiji. Aerodynamics [M]. Beijing: Beihang University Press, 2004: 153-169. (in Chinese)
[17] 赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007: 25-28. Zhao Yonghui. Aeroelasticity and control [M]. Beijing: Science Press, 2007: 25-28. (in Chinese)
[18] Liu Y, Xie C, Yang C, et al. Gust response analysis and wind tunnel test for a high-aspect ratio wing [J]. Chinese Journal of Aeronautics, 2016, 29(1): 91-103.
[19] Joseph Katz, Allen Plotkin. Low-speed aerodynamics second edition [M]. New York: Cambridge University Press, 2001: 201-204.
[20] Xie C, Yang C. Surface splines generalization and large deflection interpolation [J]. Journal of Aircraft, 2007, 44(3): 1024-1026.
[21] Xie C C, Yang C. Linearization method of nonlinear aeroelastic stability for complete aircraft with highaspect- ratio wings [J]. Science China Technological Sciences, 2011, 54(2): 403-411.
[1] 杨浩文, 吴斌, 潘天林, 谢金哲. Timoshenko梁能量守恒逐步积分算法[J]. 工程力学, 2019, 36(6): 21-28.
[2] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2): 153-159.
[3] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[4] 朱世权, 李海元, 陈志华, 张辉. 弹性机翼静气动弹性数值研究[J]. 工程力学, 2017, 34(增刊): 326-332.
[5] 齐念, 叶继红. 弹性DEM方法在杆系结构中的应用研究[J]. 工程力学, 2017, 34(7): 11-20.
[6] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
[7] 谷良贤, 王一凡. 几何非线性假设下温度大范围变化瞬态热力耦合问题研究[J]. 工程力学, 2016, 33(8): 221-230.
[8] 文颖, 孙明文, 李特, 曾庆元. 杆系结构非线性后屈曲分析的增量割线刚度法[J]. 工程力学, 2016, 33(12): 12-20.
[9] 王少钦, 马骎, 夏禾, 郭薇薇. 风-列车-大跨度悬索桥系统非线性耦合振动分析[J]. 工程力学, 2016, 33(12): 150-157.
[10] 谢长川, 胡锐, 王斐, 刘燚, 常楠. 大展弦比柔性机翼气动弹性风洞模型设计与试验验证[J]. 工程力学, 2016, 33(11): 249-256.
[11] 王刚, 齐朝晖, 孔宪超. 含机构位移起重机主副臂组合臂架结构几何非线性分析[J]. 工程力学, 2015, 32(7): 210-218.
[12] 邓继华, 邵旭东, 谭平. 几何非线性与徐变共同作用下三维杆系结构有限元分析[J]. 工程力学, 2015, 32(6): 117-123.
[13] 文颖, 李特, 曾庆元. 柔性梁几何非线性/后屈曲分析的改进势能列式方法研究[J]. 工程力学, 2015, 32(11): 18-26.
[14] 刘燚,谢长川,王立波,胡锐,杨超. 柔性飞机大变形曲面气动力计算及配平分析[J]. 工程力学, 2015, 32(10): 239-249.
[15] 潘天林,吴斌,郭丽娜,陈永盛. 能量守恒逐步积分方法在工程结构动力分析中的应用[J]. 工程力学, 2014, 31(9): 21-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日