工程力学 ›› 2017, Vol. 34 ›› Issue (1): 1-13.doi: 10.6052/j.issn.1000-4750.2016.08.ST14

• 综述 •    下一篇

绿色装配式钢结构建筑体系研究与应用

郝际平1, 孙晓岭1,2, 薛强1,2, 樊春雷2   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 西安建筑科技大学建筑设计研究院, 西安 710055
  • 收稿日期:2016-10-23 修回日期:2016-11-24 出版日期:2017-01-25 发布日期:2017-01-25
  • 通讯作者: 孙晓岭(1986-),男,山东泰安人,工程师,博士生,主要从事钢结构稳定和结构抗震研究(E-mail:xiaolingsun@126.com) E-mail:xiaolingsun@126.com
  • 作者简介:郝际平(1959-),男,山西襄垣人,教授,博士,博导,主要从事钢结构工程和教学研究(E-mail:haojiping@xauat.edu.cn);薛强(1982-),男,陕西延安人,高工,博士,主要从事钢结构稳定和结构抗震研究(E-mail:xueqiang@xauat.edu.cn);樊春雷(1987-),男,陕西渭南人,工程师,博士,主要从事钢结构稳定和结构抗震研究(E-mail:vincerfan@163.com)
  • 基金资助:
    国家自然科学基金项目(51178481,51578442)

RESEARCH AND APPLICATIONS OF PREFABRICATED STEEL STRUCTURE BUILDING SYSTEMS

HAO Ji-ping1, SUN Xiao-ling1,2, XUE Qiang1,2, FAN Chun-lei2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    2. Design Institute of Xi'an University of Architecture & Technology, Xi'an 710055, China
  • Received:2016-10-23 Revised:2016-11-24 Online:2017-01-25 Published:2017-01-25

摘要: 发展钢结构建筑,可化解钢铁产业过剩产能,推进建筑绿色化、工业化、信息化。在国家政策推动下,我国装配式钢结构建筑从1.0时代快速迈向2.0时代,发展了以传统钢结构形式为基础的改进型建筑体系,模块化新型建筑体系和工业化住宅建筑体系。新形势下,预制混凝土构件解决了钢结构的传统难题,不同墙体交叉应用发展了新型围护系统,信息化技术促进了建筑业跨越式发展。全装配钢框架和盒子型模块化装配体系是新型低、多层模块化建筑体系,其采用“建筑元器件”的设计概念,以结构构件或建筑功能单元为基本元件组合而成,具有构件装配化、围护一体化、生产工厂化等特点。新型MCFTS(Multi-core Concrete Filled Steel Tube System)高层钢结构体系适用于住宅建筑和公共建筑,该体系分为组合多腔钢管混凝土框架—支撑住宅体系和组合多腔钢板墙核心筒—钢管混凝土框架公共建筑体系。MCFTS体系以组合多腔扁柱和双侧板连接节点为技术核心。研究结果表明,该体系具有优良的抗震性能和可修复性能。

关键词: 钢结构, 装配式, 体系创新, 工业化, 模块化, 钢管混凝土, 钢板剪力墙, 钢连梁

Abstract: The development of steel structures can resolve excess capacity of steel industry and promote building greenization, industrialization and informatization. Promoted by the national policy, the assembled steel structures in China have marched from v1.0 towards v2.0 quickly, during which three new types of building systems have been developed, including the improved system based on traditional steel structures, the modular construction system, and industrialized residential building system. Under the new situation, precast concrete components have solved the traditional problems of steel structures, new types of envelope system have been developed due to the application of different walls, and information technology speeded up the development of the construction industry. Fully assembled steel frames and box-type modular building systems are new types of low-rise multi-story construction system which use the design concept of "building elements". They are based on the combination of basic components including structural components and building functional units, which have the advantages of assembly, integrated envelope, industrialized production and so on. The new MCFTS (Multi-Core Concrete Filled Steel Tube System) high-rise steel structure system is suitable for residential and public buildings. The MCFTS consists of multi-core concrete filled steel tube frame-braced residential system and multi-core concrete filled steel shear-wall-concrete filled steel tube frame system for public buildings. The MCFTS takes the combination of multi-core concrete filled steel tube column and the double side plate beam-to-column connection as its core technology. It can be concluded that the system has excellent seismic performance and can be repaired.

Key words: steel structure, prefabricated construction, system innovation, industrialization, modularization, concrete filled steel tube, steel plate shear wall, steel coupling beam

中图分类号: 

  • TU391
[1] 沈祖炎, 罗金辉, 李元齐. 以钢结构建筑为抓手推动建筑行业绿色化、工业化、信息化协调发展[J]. 建筑钢结构进展, 2016, 18(2):1-6. Shen Zuyan, Luo Jinhui, Li Yuanqi. Discussion on coordinated development of greenization, industrialization and informatization with steel buildings as objects in construction industry[J]. Progress in Steel Building Structures, 2016, 18(2):1-6. (in Chinese)
[2] Thang Nguyen Dao, John W. van de Lindt. Seismic performance of an innovative light-gauge cold-formed steel mid-rise building[C]. Chicago, Illinois, United States:Structures Congress 2012, 2012:1496-1506.
[3] Serrette, R. Seismic design strength of cold-formed steel framed shear walls[J]. Journal of Structural Engineering, 2010, 136(9):1123-1130.
[4] ANSI/AISC 358s2-14, Prequalified connections for special and intermediate steel moment frames for seismic applications[S]. February, 2014.
[5] 陆烨, 李国强. 日本一种建设产业化的高层巨型钢结构住宅体系[J]. 建筑结构, 2005, 35(6):28-31. Lu Ye, Li Guoqiang. Introduction of a Japanese high-rise residential building system with mega steel structure[J]. Building Structure, 2005, 35(6):28-31. (in Chinese)
[6] 秦姗, 伍止超, 于磊. 日本KEP到KSI内装部品体系的发展研究[J]. 建筑学报, 2014(7):17-23. Qin Shan, Wu Zhichao, Yu Lei. A study of the development of japanese infill components system from KEP to KSI[J]. Architectural Journal, 2014(7):17-23. (in Chinese)
[7] 尹静, 查晓雄. 箱式集成房折叠单元刚性试验及有限元分析[J]. 工业建筑, 2010, 40(增刊1):446-448. Yin Jing, Zha Xiaoxiong. The rigid tests and finite element analysis of the foldaway element of container assembling house[J]. Industrial Construction, 2010, 40(Suppl 1):446-448. (in Chinese)
[8] 张爱林. 工业化装配式高层钢结构体系创新、标准规范编制及产业化关键问题[J]. 工业建筑, 2014, 44(8):1-6. Zhang Ailin. The key issues of system innovation, drawing up standard and industrialization for modularized, prefabricated high-rise steel structures[J]. Industrial Construction, 2014, 44(8):1-6. (in Chinese)
[9] 李砚波, 曹晟, 陈志华, 李文葛, 胡立黎. 钢管束混凝土组合墙-梁翼缘加强型节点抗震性能试验[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(增刊1):41-47. Li Yanbo, Cao Sheng, Chen Zhihua, Li Wen'ge, Hu Lili. Experiment on seismic performance of bundled lipped channel-concrete composite wall and beam-flangestrengthened connections[J]. Journal of Tianjin University (Science and Technology), 2016, 49(Suppl 1):41-47. (in Chinese)
[10] 浙江东南网架股份有限公司. 一种多腔体钢板剪力墙及其操作方法[P]. 中国:105952032A, 2016.09.21. Zhenjiang Southeast Space Frame Group Company Limited. A multi-cavity steel plate shear wall and its production method[P]. CN:105952032A, 2016.09.21. (in Chinese)
[11] 周婷. 方钢管混凝土组合异形柱结构力学性能与工程应用研究[D]. 天津:天津大学, 2012. Zhou Ting. Mechanical behavior and engineering application of special-shaped column composed of concrete-filled square steel tubes[D]. Tianjin:Tianjin University, 2012. (in Chinese)
[12] 郝际平, 曹春华, 王迎春, 李峰. 开洞薄钢板剪力墙低周反复荷载试验研究[J]. 地震工程与工程振动, 2009, 29(2):79-85. Hao Jiping, Cao Chunhua, Wang Yingchun, Li Feng. Test on thin steel plate shear wall with opening under cyclic loading[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(2):79-85. (in Chinese)
[13] 郝际平, 郭宏超, 解崎, 虎奇, 周琦. 半刚性连接钢框架-钢板剪力墙结构抗震性试验研究[J]. 建筑结构学报, 2011, 32(2):33-40. Hao Jiping, Guo Hongchao, Xie Qi, Hu Qi, Zhou Qi. Seismic performance of semi-rigid composite steel frame with steel plate shear walls[J]. Journal of Building Structures, 2011, 32(2):33-40. (in Chinese)
[14] 郝际平, 袁昌鲁, 房晨. 薄钢板剪力墙结构边框架柱的设计方法研究[J]. 工程力学, 2014, 31(9):211-238. Hao Jiping,Yuan Changlu, Fang Chen. Study of design procedures for vertical boundary elements in thin steel plate shear walls[J]. Engineering Mechanics, 2014, 31(9):211-238. (in Chinese)
[15] 陈东, 沈小璞. 带桁架钢筋的混凝土双向自支承叠合板受力机理研究[J]. 建筑结构, 2015, 45(15):93-96. Chen Dong, Shen Xiaopu. Study on loading mechanism of bidirectional self-supporting concrete composite plates with truss rebar[J]. Building Structure, 2015, 45(15):93-96. (in Chinese)
[16] 张鹏丽. 四边简支PK预应力混凝土叠合楼板受力性能分析及应用[D]. 长沙:湖南大学, 2013. Zhang Pengli. Analysis and application on the effects of four sides simply supported PK prestressed concrete composite floor slab[J]. Changsha:Hunan University, 2013. (in Chinese)
[17] 张爱林, 胡婷婷, 刘学春. 装配式钢结构住宅配套外墙分类及对比分析[J]. 工业建筑, 2014, 44(8):7-9. Zhang Ailin, Hu Tingting, Liu Xuechun. The classification and comparative analysis of the matching external wall for the prefabricated steel structure residence[J]. Industrial Construction, 2014, 44(8):7-9. (in Chinese)
[18] 耿悦, 王玉银, 丁井臻, 徐文昕. 外挂式轻钢龙骨墙体件冈框架连接受力性能研究[J]. 建筑结构学报, 2016, 37(6):141-150. Geng Yue, Wang Yuyin, Ding Jingzhen, Xu Wenxin. Mechanical behavior of connections between out-hung light-gauge steel stud walls and steel frames[J]. Journal of Building Structures, 2016, 37(6):141-150. (in Chinese)
[19] Caroline M. Clevenger, Ricardo Khan. Impact of bim-enabled design-to-fabrication on building delivery[J]. Practice Periodical on Structural Design and Construction, 2014, 19(1):122-128.
[20] 郝际平, 刘斌, 邵大余, 李科龙, 赵秋力, 李月晨. 交叉钢带支撑冷弯薄壁型钢骨架-喷涂轻质砂浆组合墙体受剪性能试验研究[J]. 建筑结构学报, 2014, 35(12):20-28. Hao Jiping, Liu Bin, Shao Dayu, Li Kelong, Zhao Qiuli, Li Yuechen. Test on shear resistance of cold-formed thin-walled x-shaped steel strap-braced framing walls with sprayed lightweight mortar[J]. Journal of Building Structures, 2014, 35(12):20-28. (in Chinese)
[21] 西安建筑科技大学. 一种多腔体拼接型钢混凝土组合柱[P]. 中国:201620469224.1, 2016.09.01. Xi'an University of Architecture & Technology. A multi-core concrete filled steel tube composite column[P]. CN:201620469224.1, 2016.09.01. (in Chinese)
[22] 西安建筑科技大学. 一种通过下翼缘连接的双侧板节点[P]. 中国:201620472140.3, 2016.09.01. Xi'an University of Architecture & Technology. A double side plate connection assembled by bottom flange connection[P]. CN:201620472140.3, 2016.09.01. (in Chinese)
[23] 西安建筑科技大学. 支撑平推装配的多腔钢管混凝土组合柱支撑框架体系[P]. 中国:201620468549.8, 2016.09.01. Xi'an University of Architecture & Technology. Multi-core concrete filled steel tube frame-braced systems assembled by flat pushing brace[P]. CN:201620468549.8, 2016.09.01. (in Chinese)
[24] 许成祥, 杨炳, 卢梦潇, 查昕峰. 震损方钢管混凝土柱加固方法对比试验研究[J]. 广西大学学报(自然科学版), 2016, 41(1):53-62. Xu Chengxiang, Yang Bing, Lu Mengxiao, Zha Xinfeng. Comparative experimental study on strengthening approach of seismic-damaged cfsst columns[J]. Journal of Guangxi University (Nat Sci Ed), 2016, 41(1):53-62. (in Chinese)
[1] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[2] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[3] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[4] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[5] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[6] 尹飞, 周晖, 王元清, 廖小伟, 杨璐. A572 Gr.50厚板对接焊缝断裂性能研究[J]. 工程力学, 2018, 35(6): 42-51.
[7] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[8] 孙珊珊, 赵均海, 贺拴海, 崔莹, 刘岩. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5): 27-35,74.
[9] 王元清, 顾浩洋, 廖小伟. 钢结构角焊缝抗剪疲劳性能的试验研究[J]. 工程力学, 2018, 35(4): 61-68.
[10] 王卫华, 张伟, 白杨, 谭清华. 高温下内配圆管的方钢管混凝土柱轴压力学性能[J]. 工程力学, 2018, 35(3): 141-150.
[11] 庞瑞, 许清风, 梁书亭, 朱筱俊. 全装配式RC楼盖板缝节点拉剪复合受力性能试验研究[J]. 工程力学, 2018, 35(10): 112-123.
[12] 郭宏超, 郝波, 刘云贺, 孙立建. 钢框架装配式再生混凝土墙结构抗震性能试验研究[J]. 工程力学, 2018, 35(1): 172-181.
[13] 毛文婧, 史艳莉, 王文达. 内配型钢圆钢管混凝土轴压短柱在不同含钢率下承载力分析[J]. 工程力学, 2017, 34(增刊): 63-70.
[14] 黄汉辉, 陈康明, 吴庆雄, 王渠. 某中承式钢管混凝土桁式拱肋节点疲劳开裂分析[J]. 工程力学, 2017, 34(增刊): 167-173.
[15] 刘君平, 陈津凯, 陈宝春. 钢管混凝土桁肋内栓钉相贯节点受力行为试验研究[J]. 工程力学, 2017, 34(9): 150-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日