工程力学 ›› 2017, Vol. 34 ›› Issue (5): 42-51.doi: 10.6052/j.issn.1000-4750.2016.06.0429

• 土木工程学科 • 上一篇    下一篇

基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究

王元清1, 廖小伟1, 周晖2, 石永久1, 陈健陵3, 叶国平4   

  1. 1. 清华大学土木工程系土木工程安全与耐久教育部重点实验室, 北京 100084;
    2. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124;
    3. 东方电气集团东方锅炉股份有限公司, 四川, 自贡 643001;
    4. 成都益国工程设计顾问有限公司, 四川, 成都 610036
  • 收稿日期:2016-06-03 修回日期:2016-11-02 出版日期:2017-05-25 发布日期:2017-05-25
  • 通讯作者: 王元清(1963-),男,安徽霍山人,教授,博士,博导,主要从事钢结构研究(E-mail:wang-yq@mail.tsinghua.edu.cn).
  • 作者简介:廖小伟(1985-),男,湖北荆州人,博士生,主要从事钢结构疲劳与断裂研究(E-mail:liaoxw13@mails.tsinghua.edu.cn);周晖(1985-),男,浙江海宁人,讲师,博士,主要从事钢结构研究(E-mail:zhouhui@bjut.edu.cn);石永久(1962-),男,黑龙江鸡东人,教授,博士,博导,主要从事钢结构研究(E-mail:shiyj@mail.tsinghua.edu.cn);陈健陵(1981-),男,云南昭通人,高工,硕士,主要从事锅炉特种钢结构设计(E-mail:dbcjszx-fy@dbc.com.cn);叶国平(1963-),男,安徽休宁人,教授级高工,本科,主要从事钢结构工程设计(E-mail:yegp6312@vip.sina.com).
  • 基金资助:
    国家自然科学基金项目(51378289,51678339);高等学校博士学科点专项科研基金项目(20130002110085)

SAFETY ASSESSMENT OF STEEL STRUCTURE COMPONENT WITH CRACK DEFECTS USING SINTAP-FAD METHOD

WANG Yuan-qing1, LIAO Xiao-wei1, ZHOU Hui2, SHI Yong-jiu1, CHEN Jian-ling3, YE Guo-ping4   

  1. 1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China;
    3. Dongfang Boiler Group Co, Ltd, (Dongfang Electric Corporation), Zigong, Sichuan 643001, China;
    4. Chengdu Yiguo Engineering Design Consultant Co, Ltd, Chengdu, Sichuan 610036, China
  • Received:2016-06-03 Revised:2016-11-02 Online:2017-05-25 Published:2017-05-25
  • Contact: 10.6052/j.issn.1000-4750.2016.06.0429

摘要: 在施工和运营过程中,钢结构构件上出现的裂纹缺陷可能会扩展而导致其发生断裂破坏,因此对含裂纹缺陷钢结构构件的安全性进行评估具有重要意义。首先,引入断裂力学KIC断裂判据和失效评定图(FAD)概念,并介绍了结构整体性评估程序(SINTAP)的原理;给出了裂纹缺陷评定所需材料参数的确定方法,以及含裂纹缺陷构件的断裂力学参数和塑性屈服荷载的计算方法;然后,提出了基于SINTAP-FAD的含裂纹缺陷钢结构构件的安全性评估流程。最后,以华南和华东两个电厂锅炉钢结构大板梁的焊接缺陷为例,进行了基于KIC断裂判据和SINTAP-FAD的裂纹缺陷安全性评定研究。结果表明,基于SINTAP-FAD的方法为含裂纹缺陷工作的钢结构构件的安全性评估提供了一种行之有效的方法,考虑多裂纹耦合作用的安全性评定方法有待进一步研究。

关键词: 钢结构, 构件, 裂纹缺陷, 断裂力学, 结构整体性评估程序, 安全性评定

Abstract: During the construction and operation period, the induced crack defects in the structural components of steel structures may propagate and eventually result in the fracture failure of the structural components. Therefore, it is of great significance to assess the safety of structural components containing crack defects. Firstly, the principle of failure assessment diagram (FAD) and KIC fracture criterion were introduced, which are based on fracture mechanics, and on the assessment method of SINTAP. Then, the experimental methods for obtaining material parameters required by SINTAP-FAD assessment procedure, and the calculation methods of fracture mechanics parameters and plastic collapse loads of the flawed components, were presented. Finally, the safety assessment of crack defects within the butt welds on large-size plate girders of boiler steel structures from two power stations were conducted, using KIC fracture criterion and SINTAP-FAD method. The results show that the proposed method based on SINTAP-FAD provides an effective and practical approach for the safety assessment of structural components with cracks or crack-like defects in steel structures. Further research should be dedicated to the assessment method considering the multiple-crack coupling effect.

Key words: steel structure, structural component, crack defect, fracture mechanics, SINTAP, safety assessment

中图分类号: 

  • TU391
[1] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2001: 4. Chen Chuanyao. Fatigue and fracture [M]. Wuhan: Huazhong University of Science & Technology Press, 2001: 4. (in Chinese)
[2] Fish J W. Fatigue and fracture in steel bridge: Case studies [M]. New York: John Wiley & Sons, 1984: 1.
[3] Miller D K. Lessons learned from the Northridge earthquake [J]. Engineering Structures, 1998, 20(4/5/6): 249-260.
[4] Kuwamura H. Fracture of steel during an earthquake state-of-the-art in Japan [J]. Engineering Structures, 1998, 20(4/5/6): 310-322.
[5] Lee S B. Fatigue failure of welded vertical members of a steel truss bridge [J]. Engineering Failure Analysis, 1996, 3(2): 103-108.
[6] Almar-Naess A, Haagensen P J, Lian B, et al. Investigation of the Alexander L. Kielland failure-metallurgical and fracture analysis [J]. Journal of Energy Resources Technology, 1984, 106(1): 24-31.
[7] Goren Kiral B, Erim S. Prediction of fracture behavior of steel beam-to-column connections with weld defect using the SINTAP [J]. Engineering Structures, 2005, 27(5): 760-768.
[8] 童乐为, 顾敏, 朱俊, 等. 基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测[J]. 工程力学, 2013, 30(4): 331-336, 354. Tong Lewei, Gu Min, Zhu Jun, et al. Prediction of fatigue life for welded T-joints of concrete-filled circular hollow sections based on fracture mechanics [J]. Engineering Mechanics, 2013, 30(4): 331-336, 354. (in Chinese)
[9] Hayes B. Classic brittle failures in large welded structures [J]. Engineering Failure Analysis, 1996, 3(2): 115-127.
[10] 王元清. 钢结构脆性破坏事故分析[J]. 工业建筑, 1998, 28(5): 55-58. Wang Yuanqing. Accident analysis on brittle failure of steel structures [J]. Industrial Construction, 1998, 28(5): 55-58. (in Chinese)
[11] 王元清, 武延民, 王小哲, 等. 含缺口受拉平板三维应力场及其对脆性破坏的影响[J]. 清华大学学报(自然科学版), 2002, 42(6): 832-834, 842. Wang Yuanqing, Wu Yanmin, Wang Xiaozhe, et al. 3D stresses in a flat slab with a crack in tension and the effect on brittle fracture [J]. Journal of Tsinghua University (Science & Technology), 2002, 42(6): 832-834, 842. (in Chinese)
[12] Kuwamura H, Iyama J, Matsui K. Effects of material toughness and plate thickness on brittle fracture of steel members [J]. Journal of Structural Engineering, 2003, 129(11): 1475-1483.
[13] Teran-Guillen J, Cicero S, Garcia T, et al. Structural integrity assessment of the cast steel upper anchorage elements used in a cable stayed bridge [J]. Engineering Structures, 2014, 81: 309-317.
[14] Lie S T, Li T. Failure pressure prediction of a cracked compressed natural gas (CNG) cylinder using failure assessment diagram [J]. Journal of Natural Gas Science and Engineering, 2014, 18: 474-483.
[15] Zerbst U, Hamann R, Wohlschlegel A. Application of the European flaw assessment procedure SINTAP to pipes [J]. International Journal of Pressure Vessels and Piping, 2000, 77(11): 697-702.
[16] Gubeljak N, Zerbst U, Predan J, et al. Application of the European SINTAP procedure to the failure analysis of a broken forklift [J]. Engineering Failure Analysis, 2004, 11(1): 33-47.
[17] Motarjemi A K, Kocak M. Fracture assessment of a clad steel using various SINTAP defect assessment procedure levels [J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25: 929-939.
[18] 胡方鑫, 施刚, 石永久. 基于断裂力学的高强钢材梁柱节点受力性能分析[J]. 工程力学, 2015, 32(4): 41-46. Hu Fangxin, Shi Gang, Shi Yongjiu. Fracture behavior of beam-column connections using high strength steel based on fracture mechanics [J]. Engineering Mechanics, 2015, 32(4): 41-46. (in Chinese)
[19] Kim Y J, Kocak M, Ainsworth R A, et al. SINTAP defect assessment procedure for strength mis-matched structures [J]. Engineering Fracture Mechanics, 2000, 67(6): 529-546.
[20] SINTAP. Structural integrity assessment procedure for European industry [R]. Rotherham: British steel, 1999.
[21] Lanham S A. Stress intensity factor and limit load handbook [M]. Gloucester: British Energy Generation Ltd, 1998: AI.2-AI.14, AIV.4-AIV.27.
[22] ABAQUS. Analysis user's manual version 6.5 [M]. Providence, RI: Hibbitt, Karlsson and Sorenson, Inc., 2005.
[23] Kim Y J, Schwalbe K H. Mismatch effect on plastic yield loads in idealized weldments I. weld center cracks [J]. Engineering Fracture Mechanics, 2001, 68(2): 163-182.
[24] Kim Y J, Schwalbe K H. Compendium of yield load solutions for strength mis-matched DE(T), SE(B) and C (T) specimens [J]. Engineering Fracture Mechanics, 2001, 68(9): 1137-1151.
[25] 李荣生. 含椭圆埋藏裂纹平板在拉弯组合作用下的极限荷载和J积分研究[D]. 杭州: 浙江工业大学, 2008. Li Rongsheng. Limit load and J-integral of embedded elliptical cracks in plates under combined tension and bending [D]. Hangzhou: Zhejiang University of Technology, 2008. (in Chinese)
[1] 黄云, 张清华, 郭亚文, 卜一之. 钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J]. 工程力学, 2019, 36(3): 203-213,223.
[2] 刘晓, 徐建烨, 王兵. 高温后中空夹层钢管混凝土柱压弯机理分析[J]. 工程力学, 2018, 35(S1): 40-45.
[3] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[4] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[5] 秦国华, 林锋, 叶海潮, 侯源君, 陈雪梅, 韩雄, 王华敏. 基于残余应力释放的航空结构件加工变形模型与结构优化方法[J]. 工程力学, 2018, 35(9): 214-222,231.
[6] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[7] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47-54.
[8] 曹磊, 陈伯望. 胶合木梁抗剪性能研究综述[J]. 工程力学, 2018, 35(6): 1-5,14.
[9] 尹飞, 周晖, 王元清, 廖小伟, 杨璐. A572 Gr.50厚板对接焊缝断裂性能研究[J]. 工程力学, 2018, 35(6): 42-51.
[10] 王元清, 顾浩洋, 廖小伟. 钢结构角焊缝抗剪疲劳性能的试验研究[J]. 工程力学, 2018, 35(4): 61-68.
[11] 雷素素, 刘宇飞, 段先军, 郭小华, 李学飞, 李建华, 侯进峰, 李海兵, 杨建平, 幸坤涛, 崔政涛, 关键, 毕登山, 聂鑫. 复杂大跨空间钢结构施工过程综合监测技术研究[J]. 工程力学, 2018, 35(12): 203-211.
[12] 崔浩然, 吴刚, 冯德成. 摇摆构件摇摆前分析模型[J]. 工程力学, 2018, 35(12): 34-45.
[13] 徐善华, 张宗星, 李柔, 位龙虎. 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35(12): 107-115.
[14] 杨璐, 宁克洋, 班慧勇, 赵梦晗. 不锈钢焊接箱形截面压弯构件弯曲屈曲试验研究[J]. 工程力学, 2018, 35(12): 143-150.
[15] 牛彦泽, 徐业鹏, 黄丹. 双轴动载作用下脆性裂纹扩展问题的近场动力学建模与分析[J]. 工程力学, 2018, 35(10): 249-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日