工程力学 ›› 2017, Vol. 34 ›› Issue (2): 42-49.doi: 10.6052/j.issn.1000-4750.2016.05.ST05

• 土木工程学科 • 上一篇    下一篇

塑钢纤维轻骨料混凝土与钢筋粘结锚固试验研究

牛建刚1, 郝吉1, 孙立斌2, 李伯潇3   

  1. 1. 内蒙古科技大学土木工程学院, 包头 014010;
    2. 青岛冠中生态股份有限公司, 青岛 266100;
    3. 青岛理工大学琴岛学院, 青岛 266106
  • 收稿日期:2016-05-23 修回日期:2016-08-23 出版日期:2017-02-25 发布日期:2017-02-25
  • 通讯作者: 牛建刚(1976-),男,山西人,教授,博士,主要从事混凝土耐久性研究(E-mail:niujiangang@imust.edu.cn). E-mail:niujiangang@imust.edu.cn
  • 作者简介:郝吉(1991-),男,内蒙人,硕士生,主要从事钢筋混凝土结构耐久性研究(E-mail:structure37@sina.com);孙立斌(1991-),男,山东人,助理工程师,硕士,主要从事轻骨料混凝土与钢筋的粘结研究(E-mail:714965814@qq.com);李伯潇(1990-),女,山东人,助教,硕士,主要从事混凝土耐久性研究(E-mail:794564281@qq.com).
  • 基金资助:
    国家自然科学基金项目(51368042)

RESEARCH ON BOND-ANCHORAGE BEHAVIOR BETWEEN DEFORMED BARS AND HPP FIBER REINFORCED LIGHTWEIGHT AGGREGATE CONCRETE

NIU Jian-gang1, HAO Ji1, SUN Li-bin2, LI Bo-xiao3   

  1. 1. School Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China;
    2. Guanzhong Ecological Co., LTD, Qingdao 266100, China;
    3. Qindao College, Qingdao Technological University, Qingdao 266106, China
  • Received:2016-05-23 Revised:2016-08-23 Online:2017-02-25 Published:2017-02-25

摘要: 通过对内贴应变片钢筋的直接拔出试验,分析钢筋直径、相对锚固长度(la/d)及混凝土相对保护层厚度(c/d)对塑钢纤维轻骨料混凝土与钢筋间粘结性能的影响,得出不同钢筋直径、锚固长度及相对保护层厚度对试件粘结锚固性能的影响规律,并提出塑钢纤维轻骨料混凝土钢筋锚固长度计算公式。试验结果表明:随钢筋直径的增大,试件粘结刚度增强,极限粘结强度先提高后降低;增加钢筋锚固长度会降低试件极限平均粘结强度,同时极限粘结强度对应钢筋自由端滑移量减小,试件粘结韧性则随锚固长度的增加而减小;混凝土相对保护层厚度增加会使试件极限粘结强度先提高然后趋于平稳。根据试验结果得到的钢筋锚固长度计算公式与规范给出的计算公式进行比较,从极限粘结强度的角度看,规范中的钢筋锚固长度计算公式偏于保守。

关键词: 塑钢纤维, 轻骨料混凝土, 粘结性能, 锚固长度, 粘结韧性

Abstract: Through pull-out test of steel bars with strain gauges attached inside, the effect of bar diameter, la/d and c/d on the bond performance between steel bars and HPP fiber reinforced lightweight aggregate concrete was analyzed. The results of the pull-out test with different influential parameters showed that the bond stiffness between the bar and concrete was enhanced with the increase of steel bar diameter, and the ultimate bond strength was increased firstly and then decreased as the diameter was increased. The ultimate bond strength and corresponding free end displacement was reduced as the anchorage length was increased. The bond toughness declined as la/d was increased. The ultimate bond strength was increased firstly and then tended to become stable with the increase of the relative thickness of concrete cover. By comparing the bar anchorage length formula according to the test results with that given in the code, it was shown that the bar anchorage length formula in the code is conservative in terms of ultimate bond strength.

Key words: HPP fiber, lightweight aggregate concrete, bond properties, bar anchorage length, bond toughness

中图分类号: 

  • TU375
[1] 邓明科, 寇佳亮, 梁兴文, 等. 延性纤维混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(7):170-177. Deng Mingke, Kou Jialiang, Liang Xingwen, et al. Experimental investigation on aseismic behavior of ductile fiber reinforced concrete shear walls[J]. Engineering Mechanics, 2014, 31(7):170-177. (in Chinese)
[2] Tuan B L A, Hwang C L, Lin K L, et al. Development of lightweight aggregate from sewage sludge and waste glass powder for concrete[J]. Construction and Building Materials, 2013, 47:334-339.
[3] 杨健辉, 张鹏, 王涛, 等. 全轻页岩陶粒混凝土三轴受压试验及其破坏准则[J]. 工程力学, 2015, 32(10):89-98. Yang Jianhui, Zhang Peng, Wang Tao, et al. The tests and failure criteria of full lightweight shale ceramsite concrete under true triaxial compression[J]. Engineering Mechanics, 2015, 32(10):89-98. (in Chinese)
[4] Portal N W, Perez I F, Thrane L N. Pull-out of textile reinforcement in concrete[J]. Construction and Building Materials, 2014, 71:63-71.
[5] Campione G, Cucchiara C, Mendola L L, et al. Steel-concrete bond in lightweight fiber reinforced concrete under monotonic and cyclic actions[J]. Engineering Structures, 2005, 27(6):881-890.
[6] Iqbal S, Ali A, Holschemacher K, et al. Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC)[J]. Construction and Building Materials, 2015, 98:325-333.
[7] Ghavidel R, Madandoust R, Ranjbar M M. Reliability of pull-off test for steel fiber reinforced self-compacting concrete[J]. Measurement, 2015, 73:628-639.
[8] Kayali O, Haque M N, Zhu B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete[J]. Cement & Concrete Composites, 2003, 25(2):207-213.
[9] Güneyisi E, Gesoglu M, Ipek S. Effect of steel fiber addition and aspect ratio on bond strength of cold-bonded fly ash lightweight aggregate concretes[J]. Construction and Building Materials, 2013, 47:358-365.
[10] 孙立斌. 塑钢纤维轻骨料混凝土与变形钢筋粘结性能的试验研究[D]. 包头:内蒙古科技大学, 2015. Sun Libin. Research on bond properties between plastics-steel fiber reinforced lightweight aggregate concrete and deformed bars[D]. Baotou:Inner Mongolia University of Science & Technology, 2015. (in Chinese)
[11] Dahou Z, Sbartaï Z M, Castel A, et al. Artificial neural network model for steel-concrete bond prediction[J]. Engineering Structures, 2009, 31(8):1724-1733.
[12] Ashrafi H R, Jalal M, Garmsiri K. Prediction of load-displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network[J]. Expert Systems with Applications, 2010, 37(12):7663-7668.
[13] Tanyildizi H. Fuzzy logic model for the prediction of bond strength of high-strength lightweight concrete[J]. Advances in Engineering Software, 2009, 40(3):161-169.
[14] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 1999. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 1999. (in Chinese)
[15] JGJ12-1999, 轻骨料混凝土结构设计规程[S]. 北京:中国建筑工业出版社, 1999. JGJ12-1999, Design specification of lightweight aggregate concrete structures[S]. Beijing:China Architecture & Building Press, 1999. (in Chinese)
[16] Garcia-Taengua E, Martí-Vargas J R, Serna P. Bond of reinforcing bars to steel fiber reinforced concrete[J]. Construction and Building Materials, 2016, 105:275-284.
[17] Mahmoud Hassanpour, Payam Shafigh, Hilmi Bin Mahmud. Lightweight aggregate concrete fiber reinforcement-A review[J]. Construction and Building Materials, 2012, 37:452-461.
[18] Kim D, Kim M S, Yun G Y, Lee Y H. Bond strength of steel deformed rebars embedded in artificial lightweight aggregate concrete[J]. Journal of Adhesion Science Technology, 2013, 27(5/6):490-507.
[19] Kim Hung Mo, Johnson Alengaram U, Phillip Visintin, et al. Influence of lightweight aggregate on the bond properties of concrete with various strength grades[J]. Construction and Building Materials, 2015, 84:377-386.
[20] Bogas J A, Gomes M G, Real S. Bonding of steel reinforcement in structural expanded clay lightweight aggregate concrete:the influence of failure mechanism and concrete composition[J]. Construction and Building Materials, 2014, 65:350-359.
[21] 李渝军, 叶列平, 程志军, 等. 高强陶粒混凝土与变形钢筋粘结锚固强度的试验研究[J]. 建筑科学, 2006, 22(4):51-55. Li Yujun, Ye Lieping, Cheng Zhijun, et al. Bond strength between high-strength lightweight aggregate concrete and deformed bar[J]. Building Science, 2006, 22(4):51-55. (in Chinese)
[1] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180.
[2] 吴涛, 魏慧, 刘喜, 刘全威. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2): 203-213.
[3] 陈俊, 张白, 杨鸥, 蒋恩浩. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92-100.
[4] 刘喜, 吴涛, 魏慧, 张玉. 基于能量损失平衡的轻骨料混凝土深受弯构件受剪分析[J]. 工程力学, 2017, 34(9): 211-219.
[5] 郭诗惠, 孔搏, 蔡春声, 张建仁, 曾学. GFRP-混凝土组合板界面抗剪连接性能的试验研究[J]. 工程力学, 2017, 34(2): 216-225.
[6] 刘喜, 吴涛, 魏慧, 刘伯权, 邢国华. 高强轻骨料混凝土深受弯构件受剪模型分析[J]. 工程力学, 2015, 32(12): 108-116.
[7] 郑建岚,庄金平. 自密实混凝土与钢筋的粘结性能试验研究[J]. 工程力学, 2013, 30(2): 112-117.
[8] 李会杰;谢 剑;. 超低温环境下钢筋与混凝土的粘结性能[J]. 工程力学, 2011, 28(增刊I): 80-084.
[9] 吴 熙;付腾飞;吴智敏. 自密实轻骨料混凝土的双K断裂参数和断裂能试验研究[J]. 工程力学, 2010, 27(增刊Ⅱ): 249-254.
[10] 方有珍;邵永健;孙国华;王 磊. 轻骨料混凝土-型钢组合梁弯曲性能的数值模拟[J]. 工程力学, 2010, 27(10): 110-118.
[11] 李 燕;申向东. 不同纤维掺量轻骨料混凝土冻融循环后力学性能及损伤量的研究[J]. 工程力学, 2009, 26(增刊 I): 81-083,.
[12] 郑山锁;李 磊;王 斌;曾 磊;张 亮. 型钢与混凝土界面剪力传递能力[J]. 工程力学, 2009, 26(3): 148-154.
[13] 蒋田勇;方 志. CFRP筋在RPC中锚固性能的理论分析及试验研究[J]. 工程力学, 2009, 26(1): 166-173.
[14] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0-165,.
[15] 黄盛楠;刘英奎;叶列平;孙海林;冯 鹏;陆新征. 预应力高强轻骨料混凝土连续刚构桥的试验研究[J]. 工程力学, 2007, 24(增Ⅰ): 0-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日