工程力学 ›› 2017, Vol. 34 ›› Issue (增刊): 326-332.doi: 10.6052/j.issn.1000-4750.2016.03.S040

• 其他工程学科 • 上一篇    

弹性机翼静气动弹性数值研究

朱世权, 李海元, 陈志华, 张辉   

  1. 南京理工大学瞬态物理重点实验室, 南京 210094
  • 收稿日期:2016-03-25 修回日期:2017-01-10 出版日期:2017-06-25 发布日期:2017-06-25
  • 通讯作者: 李海元(1972―),男,江苏人,副研究员,博士,主要从事电磁发射技术研究(E-mail:lihaiyuan1972@163.com). E-mail:lihaiyuan1972@163.com
  • 作者简介:朱世权(1988―),男,河南人,博士生,主要从事热流固耦合研究(E-mail:zhusq0701@163.com);陈志华(1967―),男,湖南人,教授,双博士,博导,主要从事力学及其应用、燃烧爆炸方面的研究(E-mail:chenzh@mail.njust.edu.cn);张辉(1981―),男,江苏人,教授,博士,主要从事工程力学研究(E-mail:zhanghui1902@hotmail.com).
  • 基金资助:
    江苏省研究生培养创新工程项目(KYLX16_0480)

INVESTIGATIONS OF CHARACTERISTICS OF STATIC AEROELASTICITY FOR ELASTIC WING

ZHU Shi-quan, LI Hai-yuan, CHEN Zhi-hua, ZHANG Hui   

  1. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2016-03-25 Revised:2017-01-10 Online:2017-06-25 Published:2017-06-25

摘要: 基于计算流体力学/计算结构动力学(CFD/CSD)单向流固耦合计算方法,对0.4~1.6之间8种马赫数下大展弦比HIRENASD(High Reynolds Number Aero-Structural Dynamics)机翼进行了静气动弹性数值研究。通过求解基于结构化网格的三维可压N-S方程得到了机翼的气动特性,对气动载荷作用下的机翼进行结构响应分析,得到了机翼在流固耦合作用下的位移和应力等参数,结果表明机翼翼尖位移和机翼最大应力在音速前后发生了突变。可为相关大展弦比机翼的设计与分析提供参考。

关键词: CFD/CSD, 大展弦比机翼, 静气动弹性, 气动特性, 结构响应

Abstract: The static aeroelastic analysis of a large-aspect-ratio HIRENASD (High Reynolds Number Aero-Structural Dynamics) wing with Mach numbers between 0.4~1.6 is calculated, based on the one-way coupling method of computational fluid dynamics/computational structural dynamics (CFD/CSD). The aerodynamic characteristics of the wing are obtained by solving the three-dimensional N-S equations based on structured grids, the structural response of the wing under aerodynamic loads is analyzed, and the displacement and stress of the wing under fluid-structure coupling are obtained. The results show that the displacement of wing tip and the maximum stress of wing have a step change before and after the speed of sound, which can provide a corresponding reference for the design and analysis of relevant large aspect ratio wings.

Key words: CFD/CSD, large aspect ratio wing, static aeroelastic, aerodynamic characteristics, structural response

中图分类号: 

  • V211.47
[1] Flomenhoft H. Aeroelasticity and dynamic loads-From 1903 to the supersonic era [C]//Atlanta: Structures, Structural Dynamics, and Materials Conference and Exhibit, 2000: 1597.
[2] 闫锋. 欧拉方程求解静气动弹性问题[D]. 西安: 西北工业大学, 2005. Yan Feng. Solving the static aerodynamic elasticity problem with euler equation [D]. Xi'an: Northwestern Polytechnical University, 2005. (in Chinese)
[3] Obayashi S, Guruswamy G P. Convergence acceleration of a Navier-Stokes solver for efficient static aeroelastic computations [J]. AIAA Journal, 1995, 33(6): 1134―1141.
[4] Bae J S, Seigler T M, Inman D J. Aerodynamic and static aeroelastic characteristics of a variable-span morphing wing [J]. Journal of Aircraft, 2005, 42(2): 528―534.
[5] 史爱明, 杨永年, 王刚. 弹性机翼跨音速静气动弹性问题研究[J]. 工程力学, 2006, 23(5): 173―176. Shi Aiming, Yang Yongnian, Wang Gang. Investigations of characteristics of static aeroelasticity for elastic wing in transonic flow [J]. Engineering Mechanics, 2006, 23(5): 173―176. (in Chinese)
[6] Reimer L, Braun C, Chen B H, et al. Computational aeroelastic design and analysis of the HIRENASD wind tunnel wing model and tests [C]//Stockholm: International Forum on Aeroelasticity and Structural Dynamics (IFASD), 2007: 17―20.
[7] Ballmann J, Dafnis A, Korsch H, et al. Experimental analysis of high Reynolds number aero-structural dynamics in ETW [C]. AIAA 2008-841, 2008.
[8] Korsch H, Dafnis A, Reimerdes H G. Dynamic qualification of the HIRENASD elastic wing model [J]. Aerospace Science and Technology, 2009, 13(2): 130―138.
[9] Neumann J, Ritter M, Neumann J, et al. Steady and unsteady aeroelastic simulations of the HIRENASD wind tunnel experiment [C]//Seattle: IFASD 2009—International Forum on Aeroelasticity and Structural Dynamics, 2009: 132.
[10] Reimer L, Boucke A, Ballmann J, et al. Computational analysis of high Reynolds number aero-structural dynamics (HIRENASD) experiments [C]//Seattle: IFASD 2009—International Forum on Aeroelasticity and Structural Dynamics, 2009: 130.
[11] Chwalowski P, Heeg J, Wieseman C D, et al. FUN3D analyses in support of the First Aeroelastic Prediction Workshop [C]. AIAA 2013-0785, 2013.
[12] Carrera E, Varello A, Demasi L. A refined structural model for static aeroelastic response and divergence of metallic and composite wings [J]. CEAS Aeronautical Journal, 2013, 4(2): 175―189.
[13] Varello A, Lamberti A, Carrera E. Static aeroelastic response of wing-structures accounting for in-plane cross-section deformation [J]. International Journal of Aeronautical & Space Sciences, 2013, 14(4): 310―323.
[14] Rodriguez D L, Aftosmis M J, Nemec M, et al. Static aeroelastic analysis with an inviscid cartesian method [C]. AIAA 2014-0836, 2014.
[15] Mian H H, Wang G, Ye Z Y, et al. RBF interpolation with improved data reduction algorithm — A meshfree method for fluid-structure coupling and mesh deformation [C]//Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th-18th January, 2014. IEEE, 2014: 234―242.
[16] 孙岩, 邓小刚, 王运涛, 王光学. RBF_TFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10): 228―233. Sun Yan, Deng Xiaogang, Wang Yuntao, Wang Guangxue. Application of structural dynamic grid method based on RBF_TFI on wind tunnel static aero-elastic modification [J]. Engineering Mechanics, 2014, 31(10): 228―233. (in Chinese)
[17] 周强, 陈刚, 李跃明. 考虑流固耦合效应的某飞行器力学性能分析[J]. 应用力学学报, 2015, 32(2): 209―214. Zhou Qiang; Chen Gang; Li Yueming. Considering fluid-structure coupling effect of an aircraft mechanical properties analysis [J]. Chinese Journal of Applied Mechanics, 2015, 32(2): 209―214. (in Chinese)
[18] 陈大伟, 杨国伟. 静气动弹性计算方法研究[J]. 力学学报, 2009, 41(4): 469―479. Chen Dawei, Yang Guowei. Static aeroelastic analysis of a flying-wing using different models [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 469―479. (in Chinese)
[19] 严德, 杨超, 万志强. 基于非线性气动力的横侧向静气动弹性分析[J]. 工程力学, 2008, 25(9): 224―228. Yan De, Yang Chao, Wan Zhiqiang. Aircraft latitudinal static aeroelastic response analysis using nonlinear aerodynamic data [J]. Engineering Mechanics, 2008, 25(9): 224―228. (in Chinese)
[20] 范锐军, 冯朝辉, 周洲. 大展弦比无人机的静气弹问题计算及分析[J]. 力学季刊, 2009, 30(4): 548―554. Fan Ruijun, Feng Zhaohui, Zhou Zhou. Static aeroelastic investigation of large aspect ratio UAV [J]. Chinese Quarterly of Mechanics, 2009, 30(4): 548―554. (in Chinese)
[21] 张波成, 万志强, 杨超. 基于三维气动力的静气动弹性响应分析[J]. 工程力学, 2011, 28(7): 217―222. Zhang Bocheng, Wan Zhiqiang, Yang Chao. Static aeroelastic responses analysis based on three- dimensional aerodynamic forces [J]. Engineering Mechanics, 2011, 28(7): 217―222. (in Chinese)
[22] 张强, 祝小平, 周洲, 等. 高空长航时飞翼布局无人机静气动弹性研究[J]. 飞行力学, 2016, 34(1): 40―45. Zhang Qiang, Zhu Xiaoping, Zhou Zhou, et al. Study on static aeroelasticity of high altitude long endurance flying wing UAV [J]. Flight Dynamics, 2016, 34(1): 40―45. (in Chinese)
[23] 朱红钧. ANSYS 14.5热流固耦合实战指南[M]. 北京: 人民邮电出版社, 2014: 8―14. Zhu Hongjun. ANSYS 14.5 heat-fluid-structure coupling practical guide [M]. Beijing: Posts & Telecom Press, 2014: 8―14. (in Chinese)
[24] Ritter M. Static and forced motion aeroelastic simulations of the HIRENASD wind tunnel model [C]//Honolulu: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. 2012: 1633.
[25] Chwalowski P, Florance J P, Heeg J, et al. Preliminary computational analysis of the HIRENASD configuration in preparation for the aeroelastic prediction workshop [C]//Paris: IFASD 2011—International Forum on Aeroelasticity and Structural Dynamics, 2011: 108.
[1] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[2] 何文福, 许浩, 魏陆顺, 冯祎鑫, 杨巧荣. 多级性态隔震体系试验研究和结构动力响应分析[J]. 工程力学, 2018, 35(9): 97-106.
[3] 楼云锋, 刘涛, 王欢欢, 付宝强, 金先龙. 波浪冲击下充气式浮桥流固耦合数值模拟分析[J]. 工程力学, 2018, 35(9): 232-239,256.
[4] 姚志勇, 张楠, 夏禾, 李小珍. 基于重叠网格的三维车桥系统气动特性研究[J]. 工程力学, 2018, 35(2): 38-46.
[5] 刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.
[6] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
[7] 马杰, 陈志华, 孙晓晖, 薛大文. 射流控制条件下超声速尾翼弹的气动特性[J]. 工程力学, 2016, 33(9): 250-256.
[8] 马杰, 陈志华, 孙晓晖, 薛大文. 超声速旋转火箭弹气动流场的微楔控制[J]. 工程力学, 2016, 33(6): 250-256.
[9] 李永乐, 徐昕宇, 郭建明, 向活跃, 陈克坚. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学, 2016, 33(4): 130-135.
[10] 楼云锋,李昊,葛鸿辉,马波,金先龙. 考虑结构响应及轴线形状的防浪堤抗波浪冲击数值模拟研究[J]. 工程力学, 2015, 32(2): 241-249.
[11] 陈岑, 梁乃刚, 刘芳, 付强, 洪友士. 有限变形下材料的弹塑性损伤行为及结构响应分析[J]. 工程力学, 2014, 31(11): 9-16.
[12] 孙岩, 邓小刚, 王运涛, 王光学. RBF_TFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10): 228-233.
[13] 向活跃,李永乐,胡喆, 廖海黎. 桥上孔隙式风屏障缩尺模型模拟方法的风洞试验[J]. 工程力学, 2013, 30(8): 212-216.
[14] 韩 艳,胡揭玄,蔡春声,李仁发. 横风作用下考虑车辆运动的车桥系统气动特性的数值模拟研究[J]. 工程力学, 2013, 30(2): 318-325.
[15] 裴曦, 徐敏. 基于CFD/CSD耦合的声气动弹性时域仿真[J]. 工程力学, 2012, 29(9): 380-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日