工程力学 ›› 2017, Vol. 34 ›› Issue (7): 11-20.doi: 10.6052/j.issn.1000-4750.2016.02.0116

• 基本方法 • 上一篇    下一篇

弹性DEM方法在杆系结构中的应用研究

齐念, 叶继红   

  1. 东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210018
  • 收稿日期:2016-02-23 修回日期:2016-07-31 出版日期:2017-07-25 发布日期:2017-07-25
  • 通讯作者: 叶继红(1967-),女,广东梅县人,教授,博士,博导,从事大跨空间结构研究及轻钢研究(E-mail:yejihong@seu.edu.cn). E-mail:yejihong@seu.edu.cn
  • 作者简介:齐念(1983-),男,湖北黄冈人,博士生,从事大跨空间结构抗震研究(E-mail:qi_nian529@126.com).
  • 基金资助:
    国家杰出青年科学基金项目(51125031)

APPLICATION OF ELASTIC DISCRETE ELEMENT METHOD IN MEMBER STRUCTURES

QI Nian, YE Ji-hong   

  1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210018, China
  • Received:2016-02-23 Revised:2016-07-31 Online:2017-07-25 Published:2017-07-25

摘要: 基于颗粒离散元方法(DEM),结合杆系结构的特点,提出了一种适于杆系结构问题分析的DEM模型。对颗粒元相应的质量和转动惯量计算公式进行了修正;通过能量等效原理推导了杆系DEM模型分析时弹簧接触刚度系数表达式;将瑞利阻尼引入到DEM方法之中,给出了阻尼常数计算公式并用算例进行了验证。将该方法应用于杆系结构弹性分析,包括静动力与几何非线性大变形问题的空间框架结构和网壳结构等多个算例,计算结果与有限元方法结果吻合良好。DEM方法的特点是将动力分析和几何非线性分析自动包含在运动方程的计算之中,不用组集刚度矩阵,无需迭代求解。杆系DEM模型非常适宜处理杆系结构大变形及动力非线性问题,尤其是在结构进入强非线性之后的模拟分析。

关键词: 离散元, 杆系结构, 平行粘结模型, 弹性分析, 几何非线性

Abstract: Based on particle discrete element method (DEM), combined with the characteristics of member structures, a DEM model is proposed for member structures analysis. The calculated and modified formulas of the mass and the moment of inertia of the particle are presented and the spring contact stiffness expression for analysis of member structures was derived based on the principle of energy equivalence. Rayleigh damping was adopted to account for the effect of structural damping and the formula of damping constant was given and verified. According to its application in structural elastic analysis such as spatial frame under seismic action and single-layer reticulated shells subjected to impact loads, the calculation results agree well with the finite element method (FEM). The DEM takes dynamic and geometric nonlinear analysis under consideration automatically during solving the equations of motion without assembling stiffness matrixes and iterations during nonlinear analysis. Therefore, the presented DEM is reliable in dealing with large deformation and dynamic nonlinear problems, especially for the analysis of structures with strong nonlinearity.

Key words: discrete element method, member structure, parallel-bonded model, elastic analysis, geometrical nonlinearity

中图分类号: 

  • TU323
[1] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
[2] 邢纪波, 王泳嘉. 离散单元法的改进及其在颗粒介质研究中的应用[J]. 岩土工程学报, 1990, 12(5):51-57. Xing Jibo, Wang Yongjia. Improvement of discrete element method and its applications in Granular Media[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(5):51-57. (in Chinese)
[3] 刘凯欣, 高凌天. 离散元法研究的评述[J]. 力学进展, 2003, 33(4):483-490. Liu Kaixin, Gao Lingtian. A review on the discrete element method[J]. Advances in Mechanics, 2003, 33(4):489-490. (in Chinese)
[4] Sierra V B, Scholtes L, Donze F V, et al. DEM analysis of rock bridges and the contribution to rock slope stability in the case of translational sliding failures[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80:67-78.
[5] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329-1364.
[6] Obermayr M, Dressler K, Vrettos C, et al. A bonded-particle model for cemented sand[J]. Computers and Geotechnics, 2013, 49:299-313.
[7] You Z P. Development of a micromechanical modeling approach to predict asphalt mixture stiffness using the discrete element method[D]. Urbana and Champaign:University of Illinois at Urbana-Champaign, 2003:45-56.
[8] 钱振东, 王江洋. 环氧沥青混凝土裂纹起裂与失稳扩展的临界特征[J]. 工程力学, 2015, 32(1):96-103. Qian Zhendong, Wang Jiangyang. Critical characterization of crack initiation and unstable propagation for epoxy asphalt concrete[J]. Engineering Mechanics, 2015, 32(1):96-103. (in Chinese)
[9] 周健, 亓宾, 曾庆有. 被动侧向受荷桩模型试验及颗粒流数值模拟研究[J]. 岩土工程学报, 2007, 29(10):1449-1454. Zhou Jian, Qi Bin, Zeng Qingyou. Model tests and PFC2D numerical analysis on laterally loaded passive piles[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10):1449-1454. (in Chinese)
[10] 周健, 周凯敏, 姚志雄. 砂土管涌-滤层防治的离散元数值模拟[J]. 水利学报, 2010, 41(1):17-24. Zhou Jian, Zhou Kaimin, Yao Zhixiong. Numerical simulation of piping-filter prevention in sandy soil by discrete element method[J]. Journal of Hydraulic Engineering, 2010, 41(1):17-24. (in Chinese)
[11] 周健, 杨永香, 刘洋. 循环荷载下砂土液化特性颗粒流数值模拟[J]. 岩土力学, 2009, 30(4):1083-1090. Zhou Jian, Yan Yongxiang, Liu Yang. Numerical modeling of sand liquefaction behavior under cyclic loading[J]. Rock and Soil Mechanics, 2009, 30(4):1083-1090. (in Chinese)
[12] 俞缙, 穆康, 李宏, 等. 砂岩渗透性演化特性的孔隙率分布细观模拟分析[J]. 工程力学, 2014, 31(11):124-131. Yu Jin, Mu Kang, Li Hong, et al. The porosity distribution microscopic simulation analysis of the permeability evolution property of sandstone[J]. Engineering Mechanics, 2014, 31(11):124-131. (in Chinese)
[13] Tang Zhiping. Three-dimensional DEM theory and its application to impact mechanics[J]. Science in China (Series E), 2001, 44(6):561-571. (in Chinese)
[14] Liu K, Liu W. Application of discrete element method for continuum dynamic problems[J]. Archive of Applied Mechanics, 2006, 76(3):229-243.
[15] 齐念, 叶继红. 基于离散元法的杆系结构几何非线性大变形分析[J]. 东南大学学报(自然科学版), 2013, 43(5):917-922. Qi Nian, Ye Jihong. Geometric nonlinear analysis with large deformation of member structures by discrete element method[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5):917-922. (in Chinese)
[16] 丁承先, 段元锋, 吴东岳. 向量式结构力学[M]. 北京:科学出版社, 2012:252-254. Ding Chengxian, Duan Yuanfeng, Wu Dongyue. Vector mechanics of structures[M]. Beijing:Science Press, 2012:252-254. (in Chinese)
[17] 邹德高, 徐斌, 孔宪京. 瑞利阻尼系数确定方法对高土石坝地震反应的影响研究[J]. 岩土力学, 2011, 32(3):797-803. Zou Degao, Xu Bin, Kong Xianjing. Study of influence of different methods for calculating Rayleigh damping coefficient on high earth-rock dam seismic response[J]. Rock and Soil Mechanics, 2011, 32(3):793-803. (in Chinese)
[18] 齐念. DEM/FEM耦合计算方法研究及其在网壳倒塌破坏模拟中的应用[D]. 南京:东南大学, 2015. Qi Nian. Combined DEM/FEM method and its application in collapse simulation of reticulation shells[D]. Nanjing:Southeast University, 2015. (in Chinese)
[19] Chan S L. Large deflection dynamic analysis of space frame[J]. Computer and Structures, 1996, 58(2):381-387.
[1] 王蕴嘉, 周梦佳, 宋二祥. 考虑颗粒破碎的堆石料湿化变形特性离散元模拟研究[J]. 工程力学, 2018, 35(S1): 217-222.
[2] 王永亮, 鞠杨, 陈佳亮, 杨永明, Li C F. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17-25,36.
[3] 唐欣薇, 黄文敏, 周元德, 张楚汉. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9): 153-160.
[4] 肖军华, 张德, 王延海, 郭佳奇. 基于DEM-FDM耦合的普通铁路碎石道床-土质基床界面接触应力分析[J]. 工程力学, 2018, 35(9): 170-179.
[5] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2): 153-159.
[6] 刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.
[7] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[8] 狄少丞, 王庆, 薛彦卓, 李佳霖. 破冰船冰区操纵性能离散元分析[J]. 工程力学, 2018, 35(11): 249-256.
[9] 崔圣华, 裴向军, 黄润秋, 孟祥瑞, 朱凌. 团块缺陷结构对岩石静动力学特性影响的数值模拟分析[J]. 工程力学, 2018, 35(1): 88-97.
[10] 严颖, 赵金凤, 季顺迎. 块石含量和空间分布对土石混合体抗剪强度影响的离散元分析[J]. 工程力学, 2017, 34(6): 146-156.
[11] 唐欣薇, 黄文敏, 周元德, 康政. 华南风化花岗岩劈拉断裂行为的试验与细观模拟研究[J]. 工程力学, 2017, 34(6): 246-256.
[12] 杨智勇, 曹子君, 李典庆, 方国光. 颗粒接触摩擦系数空间变异性对颗粒流双轴数值试验的影响[J]. 工程力学, 2017, 34(5): 235-246.
[13] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
[14] 钟江城, 周宏伟, 赵宇峰, 刘亚群, 易海洋, 薛东杰. 浅埋煤层开采突水溃砂两相流的耦合数值研究[J]. 工程力学, 2017, 34(12): 229-238.
[15] 谷良贤, 王一凡. 几何非线性假设下温度大范围变化瞬态热力耦合问题研究[J]. 工程力学, 2016, 33(8): 221-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日