工程力学 ›› 2017, Vol. 34 ›› Issue (2): 197-206.doi: 10.6052/j.issn.1000-4750.2016.01.0061

• 土木工程学科 • 上一篇    下一篇

火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究

段进涛, 史旦达, 汪金辉, 焦宇, 何佩珊   

  1. 上海海事大学海洋科学与工程学院, 上海 201306
  • 收稿日期:2016-01-21 修回日期:2016-06-26 出版日期:2017-02-25 发布日期:2017-02-25
  • 通讯作者: 焦宇(1981-),男,河南人,讲师,博士,从事船舶火灾研究(E-mail:yujiao@shmtu.edu.cn). E-mail:yujiao@shmtu.edu.cn
  • 作者简介:段进涛(1989-),男,河南人,硕士生,从事海洋平台结构抗火研究(E-mail:djtworkholic@163.com);史旦达(1979-),男,浙江人,副教授,博士,副院长,从事海洋平台火灾研究(E-mail:ddshi@shmtu.edu.cn);汪金辉(1981-),男,安徽人,副教授,博士,从事船舶火灾研究(E-mail:wangjh@shmtu.edu.cn);何佩珊(1992-),女,广西人,硕士生,从事水利工程结构安全性研究(E-mail:peishanhe@126.com).
  • 基金资助:
    国家自然科学基金项目(51109127,50909058);上海市自然科学基金项目(16ZR1414600);上海海事大学学术创新团队基金项目(A2-0201150404);上海市研究生教育创新计划实施项目学位点建设培育项目(20131129)

A STUDY OF THERMAL-MECHANICAL COUPLED METHOD OF ANALYZING STEEL STRUCTURES' THERMAL RESPONSE IN FIRE BASED ON FDS-ABAQUS

DUAN Jin-tao, SHI Dan-da, WANG Jin-hui, JIAO Yu, HE Pei-shan   

  1. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
  • Received:2016-01-21 Revised:2016-06-26 Online:2017-02-25 Published:2017-02-25

摘要: 火灾环境下钢结构热力耦合分析普遍采用ISO834标准升温曲线(或火灾升温经验公式)描述结构的升温过程,然而这种方法并不能准确描述真实火灾环境下结构的升温过程。为了分析钢结构在真实火灾温度场下的热响应行为,该文以整体结构作为研究对象,提出了基于FDS和ABAQUS的火-热-结构耦合分析方法。该方法通过创建FDS-ABAQUS耦合接口,将FDS模拟得到的火灾动态温度场数据传输到有限元软件ABAQUS中,使用ABAQUS对整体结构进行热力耦合计算,得到整体结构在特定火灾场景下的力学响应特性。案例分析表明,该文创建的耦合方法可将FDS模拟得到的温度场数据传输到ABAQUS模型,分析结果显示传输温度场数据最大误差为2.18%;模拟整体结构热响应行为时考虑不均匀热膨胀引起的内力,模拟结果更接近真实火灾场景下的力学响应。

关键词: 钢结构, 火灾, 结构热响应, 热力耦合方法, FDS, ABAQUS

Abstract: To perform thermal-mechanical coupling analysis of steel structures, International Standard ISO834 is commonly employed to describe the temperature-time curve induced by a fire. However, previous studies demonstrated that the ISO834 cannot accurately describe the temperature profile in a real fire. Taking the overall structure as a research object, this paper developed a fire-thermal-structural coupled analysis method based on FDS and ABAQUS, which can be used to simulate the steel structures' thermal response according to the real temperature curve resulting from a fire. The dynamic temperature fields are transmitted from FDS to ABAQUS models through an FDS-ABAQUS coupling interface, which was developed in this study. Meanwhile the mechanical performance of the overall structure under fire is numerically analyzed using ABAQUS. The results of case study demonstrated that the proposed method can effectively transmit temperature fields from FDS to ABAQUS with an error of less than 2.18%. The results of simulation are more accurate when internal forces due to uneven thermal expansion are taken into account.

Key words: steel structure, fire, structural thermal response, thermal-mechanical coupling method, FDS, ABAQUS

中图分类号: 

  • TU391
[1] 杨秀英, 赵金城. 不同路径对Q235钢材高温性能的影响[J]. 土木工程学报, 2010, 43(1):29-34. Yang Xiuying, Zhao Jincheng. The effect of multi-paths on mechanical properties of Q235 steel at elevated temperature[J]. China Civil Engineering Journal, 2010, 43(1):29-34. (in Chinese)
[2] 魏德敏, 江雪玲. 钢结构非线性温度响应分析[J]. 华南理工大学学报(自然科学版), 2007, 35(10):85-91. Wei Demin, Jiang Xueling. Analyses of nonlinear temperature response of steel structures[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(10):85-91. (in Chinese)
[3] 吕俊利, 董毓利, 孙建东, 杨志年. 无防火保护钢柱抗火性能的研究[J]. 工程力学, 2011, 28(增刊I):125-129. Lü Junli, Dong Yuli, Sun Jiandong, Yang Zhinian. Study on performance of exposed H-section steel column in fire[J]. Engineering Mechanics, 2011, 28(Suppl I):125-129. (in Chinese)
[4] 薛素铎, 邱林波, 冯淼. 空间结构抗火性能研究进展[J]. 建筑钢结构进展, 2009, 11(3):29-36. Xue Suduo, Qiu Linbo, Feng Miao. Advances on fire-resistance behaviour of space structures[J]. Progress in Steel Building Structures, 2009, 11(3):29-36. (in Chinese)
[5] 郑永乾, 韩林海, 经建生. 火灾下型钢混凝土梁力学性能的研究[J]. 工程力学, 2008, 25(9):118-126. Zheng Yongqian, Han Linhai, Jing Jiansheng. Research on behavior of steel reinforced concrete (SRC) beams in fire[J]. Engineering Mechanics, 2008, 25(9):118-126. (in Chinese)
[6] 鞠竹, 王振清, 韩玉来, 梁文彦, 李加雷. 火灾高温作用下钢结构倒塌分析[J]. 工程力学, 2014, 31(增刊):121-124. Ju Zhu, Wang Zhenqing, Han Yulai, Liang Wenyan, Li Jialei. Structure collapse analysis of steel frame under fire condition[J]. Engineering Mechanics, 2014, 31(Suppl):121-124. (in Chinese)
[7] 周侃, 韩林海, 宋天诣. 钢管混凝土柱-RC梁平面框架耐火性能分析[J]. 工程力学, 2014, 31(增刊):41-46. Zhou Kan, Han Linhai, Song Tianyi. Analytical behavior of concrete filled steel tubular column-reinforced concrete beam planar frames subjected to fire[J]. Engineering Mechanics, 2014, 31(Suppl):41-46. (in Chinese)
[8] 韩祎, 王景玄, 王文达. 内配型钢方钢管混凝土偏压构件受火全过程数值模拟[J]. 工程力学, 2015, 32(增刊):60-66. Han Yi, Wang Jingxuan, Wang Wanda. Numerical simulation analysis on concrete-filled square steel tubular columns with internal profiled steel under eccentric compression exposure to full-range fire[J]. Engineering Mechanics, 2015, 32(Suppl):60-66. (in Chinese)
[9] 英明鉴, 李易, 陆新征, 叶列平, 闫维明. 某超高层混凝土结构火灾作用下的力学响应分析[J]. 工程力学, 2015, 32(5):19-27. Ying Mingjian, Li Yi, Lu Xinzheng, Ye Lieping, Yan Weiming. The mechanical response analysis of a super tall concrete structure under fire[J]. Engineering Mechanics, 2015, 32(5):19-27. (in Chinese)
[10] 姜兰潮, 杨乃勰. 钢网壳抗火非线性有限元分析[J]. 中国安全科学学报, 2006, 16(2):39-42. Jing Lanchao, Yang Naixie. Non-linear finite element analysis of fire resistance for steel truss dome[J]. China Safety Science Journal, 2006, 16(2):39-42. (in Chinese)
[11] 张超, 李国强. 基于FDS模拟分析的建筑大空间火灾下钢构件的升温确定方法研究[J]. 防灾减灾工程学报, 2012, 32(增刊):68-71. Zhao Chao, Li Guoqiang. FDS Simulation of temperature elevation of steel members exposed to large space fire[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(Suppl):68-71. (in Chinese)
[12] 李易, 陆新征, 英明鉴, 叶列平, 闫维明. 某框支砌体结构火灾倒塌事故的模拟与分析[J]. 工程力学, 2014, 31(2):66-72. Li Yi, Lu Xinzheng, Ying Mingjian, Ye Lieping, Yan Weiming. The simulation and analysis of the collapse of a frame-supported masonry structure under fire[J]. Engineering Mechanics, 2014, 31(2):66-72. (in Chinese)
[13] 石永久, 白音, 王元清. 大空间结构防火性能化设计方法研究[J]. 空间结构, 2005, 11(4):16-20. Shi Yongjiu, Bai Yin, Wang Yuanqing. Studies on performance-based fire-resisting design method for large-space structures[J]. Spatial Structures, 2005, 11(4):16-20. (in Chinese)
[14] 史健勇, 孙旋, 刘文利, 李引擎. 基于整体的大空间钢结构性能化防火设计方法研究[J]. 土木工程学报, 2011, 44(5):69-78. Shi Jianyong, Sun Xuan, Liu Wenli, Li Yinqing. Study of performance-based fire resistance design methodology for large space structures[J]. China Civil Engineering Journal, 2011, 44(5):69-78. (in Chinese)
[15] 史健勇, 赵金城. 复杂空间钢结构整体性防火分析的系统方法研究[J]. 土木工程学报, 2008, 41(11):51-62. Shi Jianyong, Zhao Jincheng. A study of systems methodology for whole structural fire resistance of complex spatial steel buildings[J]. China Civil Engineering Journal, 2008, 41(11):51-62. (in Chinese)
[16] 李超. 基于火-热-结构耦合的建筑火灾模拟方法研究及应用[D]. 上海:上海交通大学, 2013:9-23. Li Chao. Study on the numerical simulation of building fire based on fire-thermal-structural coupling method and its application[D]. Shanghai:Shanghai Jiao Tong University, 2013:9-23. (in Chinese)
[17] 白音, 石永久, 王元清. 火灾下大空间结构温度场的数值模拟分析[J]. 中国安全科学学报, 2006, 16(1):34-39. Bai Yin, Shi Yongjiu, Wang Yuanqing. Numerical simulation analysis on temperature field for large-space structures under fire[J]. China Safety Science Journal, 2006, 16(1):34-39. (in Chinese)
[18] Chen L G, Luo C, Lua J. FDS and Abaqus coupling toolkit for fire simulation and thermal and mass flow prediction[C]. Proceedings of the International Symposium on Fire Safety Science 10th, International Association for Fire Safety Science, UK, 2011:1465-1478.
[19] Jeffers A E, Sotelino E D. An efficient fiber element approach for the thermo-structural simulation of non-uniformly heated frames[J]. Fire Safety Journal, 2012, 51(7):18-26.
[20] Jeffers A E. Heat transfer element for modeling the thermal response of non-uniformly heated plates[J]. Finite Elements in Analysis and Design, 2013, 63(1):62-68.
[21] Jeffers A E, Beata P A. Generalized shell heat transfer element for modeling the thermal responses of non-uniformly heated structures[J]. Finite Elements in Analysis and Design, 2014, 83(1):58-67.
[22] Jeffers A E. Triangular shell heat transfer element for the thermal analysis of non-uniformly heat structures[J]. Journal of Structural Engineering, 2016, 142(1):1-9.
[23] Yu X, Jeffers A E. A comparison of subcycling algorithms for bridging dis-parities in temporal scale between the fire and solid domains[J]. Fire Safety Journal, 2013, 59(7):55-61.
[24] Beata P A, Jeffers A E. Spatial homogenization algorithm for bridging disparities in scale between the fire and solid domains[J]. Fire Safety Journal, 2015, 76(8):19-30.
[25] Zhang C, Silva J G, Weinschenk C. Simulation methodology for coupled fire-structure analysis:Modeling localized fire tests on a steel column[J]. Fire Technology, 2015, 51(4):1-14.
[26] McGrattan K, Hostikka S, McDermott R, et al. Fire dynamics simulator, user's guide[M]. 6th ed. Maryland:National Institute of Standards and Technology, 2014:219-259.
[27] Banerjee D K. A software independent tool for mapping thermal results to structural model[J]. Fire Safety Journal, 2014, 68:1-15.
[28] 史健勇, 任爱珠. 计算机仿真技术应用于奥运场馆火灾安全分析[J]. 自然灾害学报, 2005, 14(4):95-102. Shi Jianyong, Ren Aizhu. Application of computer simulation technology to fire safety analysis of gymnasiums for 2008 Olympic Games[J]. Journal of Natural Disasters, 2005, 14(4):95-102. (in Chinese)
[29] 曹彬, 张礼敬, 张村峰, 王益敏. 比较FDS和FLUENT在池火灾模拟中的应用[J]. 中国安全生产科学技术, 2011, 7(9):45-49. Cao Bin, Zhang Lijing, Zhang Cunfeng, Wang Yimin. Comparison of FDS and FLUENT applied in pool fire simulation[J]. Journal of Safety Science and Technology, 2011, 7(9):45-49. (in Chinese)
[30] 王阳, 罗宇. 几种焊接热弹塑性有限元分析软件的比较[J]. 热加工工艺, 2013, 42(11):5-12. Wang Yang, Luo Yu. Comparison on several kinds of T-E-P FEM software for welding[J]. Hot Working Technology, 2013, 42(11):5-12. (in Chinese)
[31] 李文昌. 预应力H型钢筋混凝土组合受弯构件分线性分析[D]. 哈尔滨:东北林业大学, 2013:56-57. Li Wenchang. Nonlinear analysis of flexural behavior in encased H-steel prestressed concrete composite beam[D]. Harbin:Northeast Forestry University, 2013:56-57. (in Chinese)
[32] 朱丽丽. ABAQUS显式分析梁单元的混凝土、钢筋本构模型研究[D]. 沈阳:沈阳建筑大学, 2012:61-62. Zhu Lili. Study on the constitutive model of concrete and steel for explicit dynamic beam elements of ABAQUS[D]. Shenyang:Shenyang Jianzhu University, 2012:61-62. (in Chinese)
[33] 李人宪. 有限体积法基础[M]. 北京:国防工业出版社, 2005:7-34. Li Renxian. The foundation of finite volume method[M]. Beijing:National Defend Industry Press, 2005:7-34. (in Chinese)
[34] 孔祥谦. 有限单元法在传热学中的应用[M]. 上海:科学出版社, 1998:237-246. Kong Xiangqian. The application of finite element method in heat transfer[M]. Shanghai:Science Press, 1998:237-246. (in Chinese)
[35] Eurocode 3. Design of steel structures-Part 1.2:General rules-structural fire design[S]. Brussels:Commission of European Communities, 2001.
[1] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[2] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[3] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[4] 钟委, 骆轲轲, 王涛, 梁天水, 赵军. 隧道火灾中正庚烷池火的火焰振荡特性研究[J]. 工程力学, 2018, 35(9): 240-247.
[5] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[6] 尹飞, 周晖, 王元清, 廖小伟, 杨璐. A572 Gr.50厚板对接焊缝断裂性能研究[J]. 工程力学, 2018, 35(6): 42-51.
[7] 张超, 薛素铎, 王广勇, 张东明. 火灾后型钢混凝土框架结构力学性能试验研究及分析[J]. 工程力学, 2018, 35(5): 152-161.
[8] 于晓东, 刘超, 左旭, 张艳芹. 静压支承摩擦副变形流热力耦合求解与实验[J]. 工程力学, 2018, 35(5): 231-238.
[9] 王元清, 顾浩洋, 廖小伟. 钢结构角焊缝抗剪疲劳性能的试验研究[J]. 工程力学, 2018, 35(4): 61-68.
[10] 王勇, 段亚昆, 张亚军, 袁广林, 王腾焱, 吕俊利. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3): 65-78.
[11] 陈昊东, 王青松, 孙金华. 火灾环境下玻璃首次破裂时间的模拟预测[J]. 工程力学, 2017, 34(增刊): 210-213.
[12] 钟委, 王涛, 梁天水. 隧道火灾中正庚烷池火燃烧特性的实验研究[J]. 工程力学, 2017, 34(8): 241-248.
[13] 李俊华, 章子华, 池玉宇. 火灾后型钢混凝土梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(7): 156-165.
[14] 党像梁, 吕西林, 钱江, 周颖. 底部开水平缝预应力自复位剪力墙有限元模拟[J]. 工程力学, 2017, 34(6): 51-63.
[15] 王元清, 廖小伟, 周晖, 石永久, 陈健陵, 叶国平. 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34(5): 42-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日