工程力学 ›› 2017, Vol. 34 ›› Issue (3): 211-218.doi: 10.6052/j.issn.1000-4750.2016.01.0056

• 土木工程学科 • 上一篇    下一篇

联方型双撑杆索穹顶考虑自重的预应力计算方法

张爱林1,2, 孙超1, 姜子钦1,2   

  1. 1. 北京工业大学建筑工程学院, 北京 100124;
    2. 北京工业大学北京市高层和大跨度预应力钢结构工程技术研究中心, 北京 100124
  • 收稿日期:2016-01-20 修回日期:2016-05-16 出版日期:2017-03-25 发布日期:2017-03-25
  • 通讯作者: 孙超(1987-),男,山东人,博士生,主要从事预应力钢结构研究(E-mail:sunchao1027@sina.com). E-mail:sunchao1027@sina.com
  • 作者简介:张爱林(1961-),男,山东人,教授,博士,博导,主要从事现代钢结构研究(E-mail:zhangal@bjut.edu.cn);姜子钦(1988-),男,江西人,讲师,博士,主要从事预应力钢结构研究(E-mail:jzqbj2010@163.com).
  • 基金资助:
    国家自然科学基金重点项目(51038006)

CALCULATION METHOD OF PRESTRESS DISTRIBUTION FOR LEVY CABLE DOME WITH DOUBLE STRUTS CONSIDERING SELF-WEIGHT

ZHANG Ai-lin1,2, SUN Chao1, JIANG Zi-qin1,2   

  1. 1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China;
    2. Beijing Engineering Research Center of High-rise and Large-span Prestressed Steel Structure, Beijing University of Technology, Beijing 100124, China
  • Received:2016-01-20 Revised:2016-05-16 Online:2017-03-25 Published:2017-03-25

摘要: 为了改善传统索穹顶结构的受力性能,该文提出了一种联方型双撑杆索穹顶结构,该索穹顶的上弦节点与两根斜撑杆相连,稳定性好并且便于张拉施工。针对联方型双撑杆索穹顶的找力分析问题,根据节点平衡方程,推导出考虑结构自重时索穹顶的预应力计算公式;给出了不同参数下联方型双撑杆索穹顶的预应力计算表,分析了该结构的受力特性;比较了考虑结构自重和不考虑结构自重时索穹顶初始预应力的差别,并采用有限元迭代法对比验证了理论公式的准确性。分析结果表明:随着矢跨比和撑杆高度的增大,结构中所有构件的初始预应力将减小;在自重荷载下,内圈脊索内力降低,最外圈斜索和环索内力显著增加;采用该文提出的理论公式可快速准确的获得考虑结构自重时联方型双撑杆索穹顶的实际预应力分布,为工程设计提供参考。

关键词: 预应力钢结构, 联方型双撑杆索穹顶, 找力分析, 自重, 受力特性

Abstract: A type of Levy cable dome with double struts is presented to improve the mechanical behavior of cable domes. This structure has a good stability and is convenient for construction due to the fact that each upper node is connected to two inclined struts. To solve its force finding problem, according to the balanced equations of connections, the calculation formulas of prestress distribution with self-weight considered are deduced. The calculation tables of cable dome under different parameters are given to investigate the mechanical behavior. The differences of prestress-state with and without self-weight are compared, and the proposed formulas are checked using finite element iteration method. The results show that with the increase of rise-span ratio and height of struts, the initial prestress decreases for all components. Under self-weight, the internal force of inner ridge cables decreases, while the internal force of the most outer diagonal cables and hoop cables increases significantly. Using the formulas deduced in this paper, the actual initial prestress distribution considering self-weight for Levy cable dome with double struts can be obtained rapidly and accurately, providing a reference for engineering design.

Key words: prestressed steel structure, Levy cable dome with double struts, force-finding analysis, self-weight, mechanical behavior

中图分类号: 

  • TU394
[1] Geiger D H, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics[C]//Shells, Membranes and Space Frame, Proceedings IASS Symposium. Madrid, Spain:IASS, 1986:265-272.
[2] Levy M P. The Georgia dome and beyond achieving lightweight-long span structures[C]//Proceedings of IASS-ASCE International Symposium. Madrid, Spain:IASS, 1994:560-562.
[3] 张国军, 葛家琪, 王树, 等. 内蒙古伊旗全民健身体育中心索穹顶结构体系设计研究[J]. 建筑结构学报, 2012, 33(4):12-22. Zhang Guojun, Ge Jiaqi, Wang Shu, et al. Design and research on cable dome structural system of the National Fitness Center in Ejin Horo Banner, Inner Mongolia[J]. Journal of Building Structures, 2012, 33(4):12-22. (in Chinese)
[4] Yuan X, Chen L, Dong S. Prestress design of cable domes with new forms[J]. International Journal of Solids and Structures, 2007, 44(9):2773-2782.
[5] 陆金钰, 武啸龙, 赵曦蕾, 等. 基于环形张拉整体的索杆全张力穹顶结构形态分析[J]. 工程力学, 2015, 32(增刊):66-71. Lu Jinyu, Wu Xiaolong, Zhao Xilei, et al. Form finding analysis of cable-strut tensile dome based on tensegrity torus[J]. Engineering Mechanics, 2015, 32(Suppl):66-71. (in Chinese)
[6] 张爱林, 刘学春, 张庆亮, 等. 索杆弦支穹顶[P]. 中国:CN200720104045.9, 2007-03-30. Zhang Ailin, Liu Xuechun, Zhang Qingliang, et al. Cable-strut suspendome[P]. China:CN200720104045.9, 2007-03-30. (in Chinese)
[7] 薛素铎, 高占远, 李雄彦, 等. 一种新型预应力空间结构——劲性支撑穹顶[J]. 空间结构, 2013, 19(1):3-9. Xue Suduo, Gao Zhanyuan, Li Xiongyan, et al. A new prestressed spatial structure——Rigid bracing dome[J]. Spatial Structures, 2013, 19(1):3-9. (in Chinese)
[8] Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30(21):3025-3035.
[9] 袁行飞, 董石麟. 索穹顶结构整体可行预应力概念及其应用[J]. 土木工程学报, 2001, 34(2):33-37. Yuan Xingfei, Dong Shilin. Application of integrity feasible prestressing to tensegrity cable domes[J]. China Civil Engineering Journal, 2001, 34(2):33-37. (in Chinese)
[10] Tran H C, Park H S, Lee J. A unique feasible mode of prestress design for cable domes[J]. Finite Elements in Analysis & Design, 2012, 59(5):44-54.
[11] 董智力, 何广乾, 林春哲. 张拉整体结构平衡状态的寻找[J]. 建筑结构学报, 1995, 20(5):24-28. Dong Zhili, He Guangqian, Lin Chunzhe. Finding of equilibrium states of tensegrity systems[J]. Journal of Building Structures, 1995, 20(5):24-28. (in Chinese)
[12] Wang Z, Yuan X, Dong S. Simple approach for force finding analysis of circular Geiger domes with consideration of self-weight[J]. Steel Construction, 2010, 66(2):317-322.
[13] 姚云龙, 董石麟, 马广英. 一种新型内外双重张弦网壳结构形状确定问题的研究[J]. 工程力学, 2014, 31(4):102-111. Yao Yunlong, Dong Shilin, Ma Guangying. Discussion on shape determination of a new double inner and outer latticed shell string-structure[J]. Engineering Mechanics, 2014, 31(4):102-111. (in Chinese)
[14] Koohestani K, Guest S D. A new approach to the analytical and numerical form-finding of tensegrity structures[J]. International Journal of Solids & Structures, 2013, 50(19):2995-3007.
[15] Lee S, Woo B H, Lee J. Self-stress design of tensegrity grid structures using genetic algorithm[J]. International Journal of Mechanical Sciences, 2014, 79(1):38-46.
[16] 葛家琪, 张爱林, 刘鑫刚, 等. 索穹顶结构张拉找形与承载全过程仿真分析[J]. 建筑结构学报, 2012, 33(4):1-11. Ge Jiaqi, Zhang Ailin, Liu Xingang, et al. Analysis of tension form-finding and whole loading process simulation of cable dome structure[J]. Journal of Building Structures, 2012, 33(4):1-11. (in Chinese)
[17] Fu F. Structural behavior and design methods of tensegrity domes[J]. Journal of Constructional Steel Research, 2005, 61(1):23-35.
[18] Pugh A. An introduction to tensegrity[M]. Oakland, California:University of California Press, 1976:10-11.
[19] Wang B B, Yan-Yun L. From tensegrity grids to cable-strut grids[J]. International Journal of Space Structures, 2001, 16(4):279-314.
[20] 董石麟, 王振华, 袁行飞. Levy型索穹顶考虑自重的初始预应力简捷计算法[J]. 工程力学, 2009, 26(4):1-6. Dong Shilin, Wang Zhenhua, Yuan Xingfei. A simplified calculation method for initial prestress of Levy cable domes with the consideration of self-weight[J]. Engineering Mechanics, 2009, 26(4):1-6. (in Chinese)
[1] 陈庆发, 赵富裕, 陈青林, 王玉丁. 基于室内模型试验的多漏斗同步放矿柔性隔离层材料受力特性分析[J]. 工程力学, 2018, 35(11): 240-248.
[2] 周晓敏, 管华栋. 磁西矿千米深井不均匀原岩应力场有限元模型研究[J]. 工程力学, 2016, 33(增刊): 306-311.
[3] 吴捷, 舒赣平. 索形优化后的双向张弦梁索力静载试验设计与研究[J]. 工程力学, 2015, 32(9): 200-209.
[4] 姚云龙,董石麟,马广英. 一种新型内外双重张弦网壳结构形状确定问题的研究[J]. 工程力学, 2014, 31(4): 102-111.
[5] 欧笛声;周雄新. 含自重载荷作用下桁架拓扑优化的功射极法[J]. 工程力学, 2011, 28(7): 136-142,.
[6] 张志宏;董石麟. 空间索桁体系的形状确定问题[J]. 工程力学, 2010, 27(9): 107-112.
[7] 张志宏;李志强;董石麟. 杂交空间结构形状确定问题的探讨[J]. 工程力学, 2010, 27(11): 56-063.
[8] 曲晓宁;罗尧治;郑君华. 基于改进遗传算法的预应力钢结构索张拉优化分析[J]. 工程力学, 2009, 26(9): 131-137.
[9] 印长俊;王星华;马石城. 灌注桩残余应变的产生机理分析[J]. 工程力学, 2009, 26(7): 125-133.
[10] 董石麟;王振华;袁行飞. Levy型索穹顶考虑自重的初始预应力简捷计算法[J]. 工程力学, 2009, 26(4): 1-006.
[11] 张爱林;杨海军;姚 力. 基于应变能的预应力平面实体结构拓扑优化设计[J]. 工程力学, 2008, 25(10): 0-116.
[12] 张志宏;张明山;董石麟. 平衡矩阵理论的探讨及一索杆梁杂交空间结构的静力和稳定性分析[J]. 工程力学, 2005, 22(6): 7-14,2.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 邢德进;李忠献. 应用SMA智能阻尼器的结构模糊控制[J]. 工程力学, 2008, 25(10): 0 -228, .
[3] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[4] 龚耀清;包世华. 超高层建筑空间巨型框架自由振动计算的新方法[J]. 工程力学, 2008, 25(10): 0 -140 .
[5] 刘金兴;邓守春;张 晶;梁乃刚. 颗粒复合材料断裂的梁网格模型[J]. 工程力学, 2008, 25(10): 0 -037 .
[6] 郎风超;邢永明;朱 静. 应用纳米压痕技术研究表面纳米化后316L 不锈钢力学性能[J]. 工程力学, 2008, 25(10): 0 -071 .
[7] 郭小刚;刘人怀;曾 娜;金 星. 子结构位移迭代法修正软管空间形态[J]. 工程力学, 2008, 25(10): 0 -032 .
[8] 邢静忠;柳春图. 线弹性土壤中埋设悬跨管道的屈曲分析[J]. 工程力学, 2008, 25(10): 0 -075 .
[9] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0 -157 .
[10] 郝庆多;王言磊;侯吉林;欧进萍;. GFRP带肋筋粘结性能试验研究[J]. 工程力学, 2008, 25(10): 0 -165, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日