工程力学 ›› 2017, Vol. 34 ›› Issue (6): 92-100.doi: 10.6052/j.issn.1000-4750.2015.12.0983

• 土木工程学科 • 上一篇    下一篇

基于裂缝带理论的深受弯构件受剪分析

吴涛, 魏慧, 刘喜   

  1. 长安大学建筑工程学院, 陕西, 西安 710061
  • 收稿日期:2015-12-11 修回日期:2016-06-07 出版日期:2017-06-25 发布日期:2017-06-25
  • 通讯作者: 吴涛(1976―),男,安徽霍山人,教授,工学博士,院长,从事钢筋混凝土结构抗震研究(E-mail:wutao@chd.edu.cn) E-mail:wutao@chd.edu.cn
  • 作者简介:魏慧(1990―),女,新疆巴楚人,博士生,从事钢筋混凝土结构抗震研究(E-mail:weihuichd@163.com);刘喜(1986―),男,陕西延安人,讲师,工学博士,从事钢筋混凝土结构抗震研究(E-mail:lliuxii@163.com)
  • 基金资助:
    国家自然科学基金项目(51578072);陕西省科技统筹创新工程计划项目(2015KTZDSF03-04);西安市科学技术项目(CXY1512(6));中央高校基本业务费项目(310828163410,310828161006);陕西省自然科学基金项目(2016JM5070)

SHEAR ANALYSIS OF DEEP FLEXURAL MEMBER BASED ON CRACK BAND THEORY

WU Tao, WEI Hui, LIU Xi   

  1. School of Civil Engineering, Chang'an University, Xi'an, Shaanxi 710061, China
  • Received:2015-12-11 Revised:2016-06-07 Online:2017-06-25 Published:2017-06-25

摘要: 目前,现行各国规范和典型抗剪模型未能准确、合理考虑尺寸效应对深受弯构件受剪能力的影响。基于拉压杆模型,结合断裂力学中能量损失平衡方程和裂缝带抗剪理论,建立了深受弯构件抗剪计算模型;通过对大量钢筋混凝土深受弯构件受剪试验数据的回归分析,对模型进行简化;采用该模型对343组深受弯构件的受剪承载力进行计算,并将其预测结果及美国ACI318-14、欧洲EC2、加拿大CSA A23.3-04、我国规范(GB50010-2010)、Tan-Cheng模型计算结果与试验值进行对比分析。分析表明:基于裂缝带理论的深受弯构件抗剪模型预测结果较各国规范及Tan-Cheng模型的计算结果与试验值吻合良好,建议模型具有明确的力学概念且受剪跨比影响较小,消除了尺寸效应的影响,能够准确预测深受弯构件的抗剪能力。

关键词: 深受弯构件, 抗剪能力, 裂缝带理论, 尺寸效应, 受剪模型

Abstract: Previous research has shown that the current specifications and typical shear models were failed to reasonably consider the size effect on shear bearing capacity of deep flexural members. This paper proposes a reasonable shear model for deep flexural members by combining an energy loss equilibrium equation in fracture mechanics with the crack band theory based on the strut-and-tie model. 343 reinforced concrete deep flexural members were collected and were used to simplify the proposed shear model. To determine the rationality of a simplified shear model, its calculation results and the predicted results obtained from ACI 318-14, EC2, CSA A23.3-04 and GB50010-2010 were compared with the test results. The comparison results show that the shear bearing capacity of deep flexural members predicted by the simplified shear model based on crack band theory is better than those determined from others current specifications and from Tan-Cheng model, and that also in a better agreement with the test results. Owing to the specific force transfer mechanisms and the less effect of shear span to a depth ratio, it is also concluded that this proposed model can reasonably consider the size effect of large members, and can accurately predict the shear bearing capacity of reinforced concrete deep flexural members.

Key words: deep flexural member, shear capacity, crack band theory, size effect, shear model

中图分类号: 

  • TU375.1
[1] GB50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB50010-2010, Code for design of concrete structures [S]. Beijing: China Architectural & Building Press, 2010. (in Chinese)
[2] ACI Committee 318: Building code requirements for structural concrete (ACI318-14) and commentary [S]. (ACI318R-14), American Concrete Institute, 2014.
[3] CSA A23.3-04, Design of concrete structures [S]. Canadian Standards Association, 2004.
[4] The European Standard EN 1992-1-1: 2004, Eurocode 2. Design of concrete structures [S]. British Standards Institution, 2004.
[5] Tan K H, Cheng G H. Size effect on shear strength of deep beams: Investigating with strut-and-tie model [J]. Structure Engineering, 2006, 132(5): 673-685.
[6] Ba?ant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials [M]. New York: CRC, 1998: 85-103.
[7] MacGregor J G, Wight J K. Reinforced concrete: mechanics and design [M]. Singapore: Prentice Hall, Pearson Education South Asia, 2006: 55-78.
[8] Yang K H, Chung H S, Ashour A F. Influence of shear reinforcement on reinforced concrete continuous deep beams [J]. ACI Structural Journal, 2007, 104(4): 420-429.
[9] Ashour A F, Yang K H. Application of plasticity theory to reinforced concrete deep beams-A review [J]. Magazine of Concrete Research, 2008, 60(9): 657-664.
[10] Smith K H, Vantsiotis A S. Shear strength of deep beams [J]. Journal of American Concrete Institute, 1982, 79(3): 201-213.
[11] Tan K H, Kong F K, Teng S, et al. Effect of web reinforcement on high-strength concrete deep beams [J]. ACI Structural Journal, 1997, 94(5): 572-582.
[12] Yang K H, Ashour A F. Code modelling of reinforced concrete deep beam [J]. Magazine of Concrete Research, 2008, 60(6): 441-454.
[13] Matamoros A B, Wong K H. Design of simply supported deep beams using strut-and-tie models [J]. ACI Structural Journal, 2003, 100(6): 704-712.
[14] Smith K N, Vantsiotis A S. Shear strength of deep beams [J]. ACI Structural Journal, 1982, 79(3): 201-203.
[15] Kong F K, Robins P J, Cole D F. Web reinforcement effects on deep beams [J]. ACI Structural Journal, 1970, 67(12): 1010-1017.
[16] Clark A P. Diagonal tension in reinforced concrete beams [J]. ACI Journal Proceedings, 1951, 48(10): 145-156.
[17] Oh J K, Shin S W. Shear strength of reinforced high-strength concrete deep beams [J]. ACI Structural Journal, 2001, 98(2): 164-173.
[18] Aguilar G, Matamoros A B, Parra-Montesinos G J, et al. Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams [J]. ACI Structural Journal, 2002, 99(4): 539-548.
[19] Quintero-Febres C G, Parra-Montesinos G, Wight J K. Strength of struts in deep concrete members designed using strut-and-tie method [J]. ACI Structural Journal, 2006, 103(4): 577-586.
[20] Tan K H, Kong F K, Teng S, et al. High-strength concrete deep beams with effective span and shear span variations [J]. ACI Structural Journal, 1995, 92(4): 395-405.
[21] Subedi N K, Vardy A E, Kubotat N. Reinforced concrete deep beams some test results [J]. Magazine of Concrete Research, 1986, 38(137): 206-219.
[22] Ramakrishnan V, Ananthanarayana Y. Ultimate strength of deep beams in shear [J]. ACI Journal Proceedings, 1968, 65(2): 87-98.
[23] 刘立新, 谢丽丽, 陈萌. 钢筋混凝土深受弯构件受剪性能的研究[J]. 建筑结构, 2000, 30(10): 19-22.Liu Lixin, Xie Lili, Chen Meng. The shear strength capability of reinforced concrete deep flexural member [J]. Building Structure, 2000, 30(10): 19-22. (in Chinese)
[24] 龚绍熙. 钢筋混凝土深梁在对称集中荷载下抗剪强度的研究[J]. 郑州工学院学报, 1982(1): 52-68.Gong Shaoxi. The shear strength capability of reinforced concrete deep beam under symmetric concentrated loads [J]. Journal of Zhengzhou Technology Institute, 1982(1): 52-68. (in Chinese)
[25] Manuel R F, Slight B W, Suter G T. Deep beam behavior affected by length and shear span variations [J]. ACI Journal Proceedings, 1971, 68(12): 954-958.
[26] Yang K H, Ashour A F. Influence of section depth on the structural behaviour of reinforced concrete continuous deep beams [J]. Magazine of Concrete Research, 2007, 59(8): 575-586.
[27] Tan K H, Kong F K, Teng S, et al. Effect of web reinforcement on high-strength concrete deep beams [J]. ACI Structural Journal, 1997, 94(5): 572-581.
[28] Yang K H, Chung H S, Ashour A F. Influence of shear reinforcement on reinforced concrete continuous deep beams [J]. ACI Structural Journal, 2007, 104(4): 420-429.
[29] Ba?ant Z P, Sun H H. Size effect in diagonal shear failure: Influence of aggregate size and stirrups [J]. ACI Materials Journal, 1987, 84(4): 259-272.
[1] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[2] 张帅, 金浏, 李冬, 杜修力. 结构尺寸对钢筋混凝土短柱抗震性能影响:细观分析[J]. 工程力学, 2018, 35(12): 164-174.
[3] 金浏, 苏晓, 杜修力. 钢筋混凝土梁受弯破坏及尺寸效应的细观模拟分析[J]. 工程力学, 2018, 35(10): 27-36.
[4] 杜敏, 金浏, 李冬, 杜修力. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9): 54-63.
[5] 刘喜, 吴涛, 魏慧, 张玉. 基于能量损失平衡的轻骨料混凝土深受弯构件受剪分析[J]. 工程力学, 2017, 34(9): 211-219.
[6] 刘喜, 王洁, 吴涛, 魏慧. 深受弯构件抗剪影响参数显著性分析[J]. 工程力学, 2017, 34(7): 126-135.
[7] 李冬, 金浏, 杜修力. 轴压加载下高强钢筋混凝土柱尺寸效应试验研究[J]. 工程力学, 2017, 34(4): 49-56,71.
[8] 管俊峰, 王强, HU Xiaozhi, 白卫峰, 姜斌. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12): 22-30.
[9] 杨树桐, 陈瑜嘉. 钢筋与混凝土粘结界面局部断裂能的确定[J]. 工程力学, 2016, 33(增刊): 39-44.
[10] 李冬, 金浏, 杜修力, 卢爱贞. 钢筋混凝土柱偏心受压力学性能的细观数值研究[J]. 工程力学, 2016, 33(7): 65-72.
[11] 夏明锬, 徐远杰, 楚锡华. 一种考虑尺寸效应的颗粒材料流变模型及其验证[J]. 工程力学, 2015, 32(7): 176-183.
[12] 刘伯权, 刘喜, 吴涛. 基于共轭先验分布的深受弯构件受剪承载力概率模型分析[J]. 工程力学, 2015, 32(4): 169-177.
[13] 倪海江,徐卫亚,石安池,徐建荣,吉华. 基于离散元的柱状节理岩体等效弹性模量尺寸效应研究[J]. 工程力学, 2015, 32(3): 90-96.
[14] 刘喜, 吴涛, 魏慧, 刘伯权, 邢国华. 高强轻骨料混凝土深受弯构件受剪模型分析[J]. 工程力学, 2015, 32(12): 108-116.
[15] 吴涛, 黄凯, 刘喜, 刘伯权, 黄华. 钢筋混凝土深受弯构件受剪承载力概率模型研究[J]. 工程力学, 2015, 32(11): 210-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日