工程力学 ›› 2017, Vol. 34 ›› Issue (6): 236-245.doi: 10.6052/j.issn.1000-4750.2015.12.0957

• 其他工程学科 • 上一篇    下一篇

严重段塞流引起的海洋立管振动响应

王琳1,2, 李玉星1,2, 刘昶1,2, 胡其会1,2, 王娅婷3, 王权1,2   

  1. 1. 中国石油大学(华东)储运与建筑工程学院, 青岛 266580;
    2. 山东省油气储运安全省级重点实验室, 青岛 266580;
    3. 中煤科工集团重庆设计研究院有限公司, 重庆 400016
  • 收稿日期:2015-12-01 修回日期:2017-04-25 出版日期:2017-06-25 发布日期:2017-06-25
  • 通讯作者: 胡其会(1981―),男,河南人,讲师,博士,主要从事多相管流及油气田集输技术研究(E-mail:huqihui@upc.edu.cn) E-mail:huqihui@upc.edu.cn
  • 作者简介:王琳(1986―),男,陕西人,博士生,主要从事流固耦合动力学研究(E-mail:lincw_wang@qq.com);李玉星(1970―),男,山东人,教授,博士,主要从事多相管流及油气田集输技术研究(E-mail:liyx@upc.edu.cn);刘昶(1988―),男,河北人,硕士生,主要从事多相管流及油气田集输技术研究(E-mail:lococo009@sina.com);王娅婷(1989―),女,四川人,助理工程师,硕士,主要从事燃气工程设计和研究(E-mail:wangyating915@gmail.com);王权(1992―),男,湖北人,硕士生,主要从事多相管流及油气田集输技术研究(E-mail:1589073010@qq.com)
  • 基金资助:
    国家自然科学基金项目(51404290);高等学校博士学科点专项科研基金项目(20110133110004)

DYNAMIC RESPONSE OF A MARINE RISER CAUSED BY SEVERE SLUGGING FLOW

WANG Lin1,2, LI Yu-xing1,2, LIU Chang1,2, HU Qi-hui1,2, WANG Ya-ting3, WANG Quan1,2   

  1. 1. College of Pipeline and Civil Engineering, China University of Petroleum (Huadong), Qingdao 266580, China;
    2. Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety Engineering, Qingdao 266580, China;
    3. CCTEG Chongqing Engineering Co., Ltd, Chongqing 400016, China
  • Received:2015-12-01 Revised:2017-04-25 Online:2017-06-25 Published:2017-06-25

摘要: 基于改进的严重段塞流瞬态数学模型和平面刚架理论,建立严重段塞流海洋立管耦合振动数学模型,对数学模型进行求解,研究了严重段塞流引起的海洋立管振动响应。数值模拟过程中,采用欧拉法计算严重段塞流流动参数,利用Galerkin法对立管结构动力学方程进行有限元离散,Newmark-β法求解离散方程。为了提高计算效率和精度,采用了变时间步长逐步积分方案。将数值模拟结果与实验数据进行对比,验证了数学模型和数值方法的准确性。对严重段塞流引起的立管系统位移响应、内力和支承力变化进行了深入分析。结果表明:立管系统的振动响应、内力变化规律与严重段塞流的周期性特征密切相关;弹性基础可以极大降低管道结构的振动幅度及内力,尤其是下倾管的弯曲内力;上升管的高频振动幅度较大,轴力和弯曲内力变化也较大。严重段塞流引起海洋立管振动响应的分析对海洋立管设计及其支承防护具有重要的指导意义。

关键词: 严重段塞流, 海洋立管, 结构动力学, 流固耦合模型, 有限单元法, 数值模拟

Abstract: A fluid-structure interaction model for a marine riser system on elastic foundation conveying severe slugging flow was developed based on the modified severe slugging transient model and theories of plane frame structure, and solved to simulate the dynamic response of a marine riser system caused by severe slugging flow using numerical methods. The Eulerian method was used to solve the equations of severe slugging flow. Galerkin's method was adopted to discretize the dynamic equations in space and Newmark-β method was employed for time-domain integration of the discretized equations. Variable time-steps were employed for higher computational efficiency and accuracy in the integration process. The comparisons of simulation results with the experimental data show that the mathematical model and numerical methods are reasonable. Detailed analysis of dynamic response, internal force, and reaction force of the hybrid riser reveals that the dynamic response of hybrid riser is closely related to the periodic characteristics of severe slugging flow, and the elastic foundation can suppress the vibration amplitude and the internal force, especially bending stress of the downward pipeline, significantly. The amplitude of high frequency vibration is large and the axial stress and bending stress oscillate acutely. These analyses are significant to guide the design of marine risers.

Key words: dynamics of structures, severe slugging, marine riser system, FSI model, FEM, numerical simulation

中图分类号: 

  • TE832
[1] Chen S S. Flow-Induced vibration of circular cylindrical structures [M]. New York: Hemisphere Publishing Corporation, 1985: 178-182.
[2] Païdoussis M P, Issid N T. Dynamic stability of pipes conveying fluid [J]. Journal of Sound and Vibration, 1974, 33(3): 267-294.
[3] Housner G W. Bending vibrations of a pipe line containing flowing fluid [J]. Journal of Applied Mechanics, 1952, 19(2): 205-208.
[4] Niordson F I N. Vibrations of a cylindrical tube containing flowing fluid [J]. Transactions of the Royal Institute of Technology, 1953, 3(73): 1-27.
[5] Gregory R W, Paidoussis M P. Unstable oscillation of tubular cantilevers conveying fluid. I. Theory [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, 293(1435): 512-527.
[6] Paidoussis M P. Dynamics of tubular cantilevers conveying fluid [J]. Journal of Mechanical Engineering Science, 1970, 12(2): 85-103.
[7] Paidoussis M P, Cusumano J P, Copeland G S. Low-dimensional chaos in a flexible tube conveying fluid [J]. Journal of Applied Mechanics, 1992, 59(1): 196-205.
[8] Païdoussis M P, Li G X. Pipes conveying fluid: A model dynamical problem [J]. Journal of Fluids and Structures, 1993, 7(2): 137-204.
[9] Kuiper G L, Metrikine A V, Battjes J A. A new time-domain drag description and its influence on the dynamic behaviour of a cantilever pipe conveying fluid [J]. Journal of Fluids and Structures, 2007, 23(3): 429-445.
[10] Kuiper G L, Brugmans J, Metrikine A V. Destabilization of deep-water risers by a heaving platform [J]. Journal of Sound and Vibration, 2008, 310(3): 541-557.
[11] 白兴兰, 段梦兰, 李强. 基于整体分析的钢悬链立管触地点动力响应分析[J]. 工程力学, 2014, 31(12): 249-256.Bai Xinglan, Duan Menglan, Li Qiang. Dynamic response of a steel catenary riser at the touchdown point based on integrated analysis [J]. Engineering Mechanics, 2014, 31(12): 249-256. (in Chinese)
[12] Hara F. Two phase flow induced vibrations in a horizontal piping system [J]. JSME. 1975, 42(360): 2400-2411. (in Japanese)
[13] Xu Xiaoping, Liu Mingyan, Ma Yue, An Min. Effects of fluidized solid particles on vibration behaviors of a graphite tube evaporator with an internal vapor–liquid flow [J]. Applied Thermal Engineering, 2016, 100(2016): 1229-1244.
[14] Pettigrew M J, Taylor C E. Two-phase flow-induced vibration: An overview [J]. Journal of Pressure Vessel Technology, 1994, 116(3): 233-253.
[15] Pettigrew M J, Taylor C E, Fisher N J, Yetisir M, Smith B A W. Flow-induced vibration: recent findings and open questions [J]. Nuclear Engineering and Design, 1998, 185(2/3): 249-276.
[16] Tay B L, Thorpe R B. Hydrodynamic forces acting on pipe bends in gas-liquid slug flow [J]. Chemical Engineering Research and Design, 2014, 92(5): 812-825.
[17] Baliño J L. Modeling and simulation of severe slugging in air-water systems including inertial effects [J]. Journal of Computational Science, 2014, 5(3): 482-495.
[18] Baliño J L, Burr K P, Nemoto R H. Modeling and simulation of severe slugging in air–water pipeline–riser systems [J]. International Journal of Multiphase Flow, 2010, 36(8): 643-660.
[19] Boe A. Severe slugging characteristics, Part 1:Flow regime for severe slugging; Part 2: Point model simulation study [C]. Trondheim: NTH, 1981: 1-35.
[20] Jansen F E, Shoham O, Taitel Y. The elimination of severe slugging—experiments and modeling [J]. International Journal of Multiphase Flow, 1996, 22(6): 1055-1072.
[21] Schmidt Z, Brill J, Beggs H. Experimental study of severe slugging in a two-phase-flow pipeline-riser pipe system [J]. SPE Journal, 1980, 20(5): 407-414.
[22] Yocum B T. Offshore Riser slug flow avoidance: Mathematical models for design and optimization [C]. London: Society of Petroleum Engineers, 1973: 4312.
[23] 马华伟. 组合立管系统中严重段塞流特性及其消除方法研究[D]. 青岛: 中国石油大学, 2008.Ma Huawei. Investigation on severe slugging phenomenon and elimination methods in multiphase riser pipe system [D]. Qingdao: China University of Petroleum, 2008. (in Chinese)
[24] 王琳, 刘昶, 李玉星, 等. 基于CFD的海洋立管系统严重段塞流数值模拟[J]. 科学技术与工程, 2016, 16(16): 162-167.Wang Lin, Liu Chang, Li Yuxing, et al. Numerical simulation of severe slugging in offshore riser on CFD [J]. Science Technology and Engineering,, 2016, 16(16): 162-167. (in Chinese)
[25] 王琳, 刘昶, 李玉星, 等. 空气-水立管系统的严重段塞流瞬态数学模型[J]. 油气储运, 2016, 35(11): 1235-1242.Wang Lin, Liu Chang, Li Yuxing, et al. Transient mathematical model for severe slugging in the air-water riser system [J]. Oil & Gas Storage and Transportation, 2016, 35(11): 1235-1242. (in Chinese)
[26] Mukherjee H, Brill J P. Liquid holdup correlations for inclined two-phase flow [J]. Journal of Petroleum Technology, 1983, 35(5): 1003-1008.
[27] Nicklin D J, Wilkes J O, Davidson J F. Two phase flow in vertical tubes [J]. Transactions of the Institution of Chemical Engineers, 1962, 40(1): 61-68.
[28] Tengesdal J O, Kaya A S, Sarica C. Flow-pattern transition and hydrodynamic modeling of churn flow [J]. SPE Journal, 1999, 4(4): 342-348.
[29] Clough R W, Penzien J. Dynamics of structures [M]. Berkeley: Computers & Structures, Inc., 2003: 365-376.
[30] Binesh S M. Analysis of beam on elastic foundation using the radial point interpolation method [J]. Scientia Iranica, 2012, 19(3): 403-409.
[31] Bathe K J. Finite element procedures [M]. New Jersey: Prentice-Hall, Inc., 1996: 768-830.
[1] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[2] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
[3] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[4] 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364.
[5] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[6] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[7] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
[8] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[9] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249-256.
[10] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[11] 潘晓军, 张燕平, 陈曦, 高伟, 樊剑. 水平基底上薄膜流体的数学模型及其数值模拟[J]. 工程力学, 2018, 35(6): 24-32,41.
[12] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[13] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[14] 田甜, 雷洋, 齐法琳, 黎国清. 不同时速列车振动荷载下衬砌拱圈振动响应传递规律[J]. 工程力学, 2018, 35(5): 143-151.
[15] 韩艳, 李凯, 陈浩, 蔡春声, 董国朝. 桥面典型车辆气动特性及车辆间挡风效应的数值模拟研究[J]. 工程力学, 2018, 35(4): 124-134,185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日