工程力学 ›› 2017, Vol. 34 ›› Issue (5): 142-147.doi: 10.6052/j.issn.1000-4750.2015.12.0953

• 土木工程学科 • 上一篇    下一篇

双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验

徐昕宇, 李永乐, 廖海黎, 任森   

  1. 西南交通大学桥梁工程系, 四川, 成都 610031
  • 收稿日期:2015-12-01 修回日期:2016-07-03 出版日期:2017-05-25 发布日期:2017-05-25
  • 通讯作者: 李永乐(1972-),男,河南洛阳人,教授,博士,博导,主要从事桥梁风致振动及车桥耦合振动等研究(E-mail:lele@swjtu.edu.cn).
  • 作者简介:徐昕宇(1990-),男,四川乐山人,博士生,主要从事车桥耦合振动及桥梁风工程研究(E-mail:lsxxy90@126.com);廖海黎(1956-),男,四川资中人,教授,博士,博导,主要从事桥梁风工程研究(E-mail:hlliao@home.swjtu.edu.cn);任森(1992-),男,吉林四平人,硕士生,主要从事大跨度桥梁结构动力行为研究(E-mail:iars1992@163.com).
  • 基金资助:
    国家自然科学基金项目(51525804,51278434);西南交通大学博士研究生创新基金项目

FLUTTER OPTIMIZATION OF A DOUBLE-DECK TRUSS-STIFFENED GIRDER THREE-TOWER SUSPENSION BRIDGE BY WIND TUNNEL TESTS

XU Xin-yu, LI Yong-le, LIAO Hai-li, REN Sen   

  1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2015-12-01 Revised:2016-07-03 Online:2017-05-25 Published:2017-05-25
  • Contact: 10.6052/j.issn.1000-4750.2015.12.0953

摘要: 双层桥面桁架梁气动性能复杂,已有研究较为少见。以某双层桥面桁架三塔悬索桥设计方案为背景,通过节段模型风洞试验,研究了栏杆透风率与高度、双层桥面板中央开槽、中央稳定板等多种气动措施对颤振临界风速的影响。结果表明:该桥原始断面在-3°、0°、+3°三种风攻角下,颤振临界风速均小于颤振检验风速,存在发生颤振失稳的可能性;中央稳定板的高度对颤振临界风速影响较大,上层桥面设置上中央稳定板能提高桥梁的颤振临界风速;上、下双层桥面板均中央开槽能够显著提高0°风攻角下的颤振临界风速,但使正攻角下的颤振临界风速有所降低;采用上、下双层桥面板中央开槽、合理地设置中央稳定板和改变栏杆透风率等气动综合措施,能使该桥在各攻角情况下的颤振临界风速满足要求。

关键词: 桥梁工程, 三塔悬索桥, 双层桥面桁架梁, 风洞试验, 颤振稳定性, 气动优化

Abstract: Aerodynamic characteristics of double-deck truss-stiffened girders are complex, while existing research is relatively scarce. Taking a double-deck truss-stiffened girder three-tower suspension bridge as the research object, influences of aerodynamic measurements, including the ventilation rate, height of the balustrades, central slotting of upper and lower decks and central stabilizer, on the flutter critical wind speed were studied by section model wind tunnel tests. The results show that flutter critical wind speeds of original cross-section are less than the corresponding flutter checking wind speed at wind attack angles of -3°, 0° and +3°, leading to the possibilities of flutter. The height of the central stabilizer has prominent effects on the flutter critical speed, and the upper central stabilizer on the upper deck can increase the flutter critical wind speeds. The flutter critical wind speed can be increased greatly at the wind attack angle of 0° when centers of upper and lower decks are slotted, while the speed may decrease at a positive wind attack angle. The combined aerodynamic measurements of central slotting of upper and lower decks, reasonably setting the stabilizer and changing the ventilation rate of balustrades can make the flutter critical wind speeds of the bridge meet the requirements at each wind attack angle.

Key words: bridge engineering, three-tower suspension bridge, double-deck truss-stiffened girder, wind tunnel test, flutter stability, aerodynamic optimization

中图分类号: 

  • U448.25
[1] 李永乐, 徐昕宇, 郭建明, 向活跃, 陈克坚. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学, 2016, 33(4): 130-135.Li Yongle, Xu Xinyu, Guo Jianming, Xiang Huoyue, Chen Kejian. Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge [J]. Engineering Mechanics, 2016, 33(4): 130-135. (in Chinese)
[2] Yoshida O, Okuda M, Moriya T. Structural characteristics and applicability of four-span suspension bridge [J]. Journal of Bridge Engineering, 2004, 9(5): 453-463.
[3] Nazir C P. Multispan balanced suspension bridge [J]. Journal of Structural Engineering, 1986, 112(11): 2512-2527.
[4] 葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. 工程力学, 2011, 28(增刊2): 11-23. Ge Yaojun. Technical challenges and refinement research on wind resistance of long-span bridges [J]. Engineering Mechanics, 2011, 28(Suppl 2): 11-23. (in Chinese)
[5] Thai H T, Choi D H. Advanced analysis of multi-span suspension bridges [J]. Journal of Constructional Steel Research, 2013, 90: 29-41.
[6] Wang H, Tao T Y, Zhou R, Hua X G, Kareem A. Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128: 12-21.
[7] 张文明, 葛耀君. 三塔双主跨悬索桥动力特性精细化分析[J]. 中国公路学报, 2014, 27(2): 70-76. Zhang Wenming, Ge Yaojun. Refinement analysis of dynamic characteristics of suspension bridge with triple towers and double main spans [J]. China Journal of Highway and Transport, 2014, 27(2): 70-76. (in Chinese)
[8] 徐昕宇, 李永乐, 魏恩来, 向活跃. 三线合一钢箱桁悬索桥颤振性能风洞试验研究[J]. 桥梁建设, 2014, 44(6): 19-23. Xu Xinyu, Li Yongle, Wei Enlai, Xiang Huoyue. Wind tunnel test study of flutter performance of a three-line steel box and truss girder suspension bridge [J]. Bridge Construction, 2014, 44(6): 19-23. (in Chinese)
[9] 李永乐, 董世赋, 臧瑜, 强士中. 大跨度公轨两用悬索桥风-车-桥耦合振动及抗风行车准则研究[J]. 工程力学, 2012, 29(12): 114-120. Li Yongle, Dong Shifu, Zang Yu, Qiang Shizhong. Coupling vibration of wind-vehicle-bridge system for long-span road-rail suspension bridge and resistant-wind criterion of running train [J]. Engineering Mechanics, 2012, 29(12): 114-120. (in Chinese)
[10] Miyata T, Yamaguchi K. Aerodynamics of wind effects on the Akashi Kaikyo Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 287-315.
[11] Fujino Y, Kimura K, Tanaka H. Wind resistant design of bridges in Japan: developments and practices [M]. Tokyo: Springer Science & Business Media, 2012: 155-159.
[12] 陈政清, 欧阳克俭, 牛华伟, 华旭刚. 中央稳定板提高桁架梁悬索桥颤振稳定性的气动机理[J]. 中国公路学报, 2009, 22(6): 53-59. Chen Zhengqing, OuYang Kejian, Niu Huawei, Hua Xugang. Aerodynamic mechanism of important of flutter stability of truss-girder suspension bridge using central stabilizer [J]. China Journal of Highway and Transport, 2009, 22(6): 53-59. (in Chinese)
[13] 李加武, 车鑫, 高斐, 马林林. 窄悬索桥颤振失稳控制措施效果研究[J]. 振动与冲击, 2012, 31(23): 77-81. Li Jiawu, Che Xin, Gao Fei, Ma Linlin. Effects of wind-resistant control measures against flutter instability of a narrow suspension bridge [J]. Journal of Vibration and Shock, 2012, 31(23): 77-81. (in Chinese)
[14] 徐洪涛. 山区峡谷风特性参数及大跨度桁梁桥风致振动研究[D]. 成都: 西南交通大学, 2009. Xu Hongtao. Research of wind characteristic parameters and wind-induced vibration of long span bridge with truss girder in mountainous area [D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)
[15] Zhu L D, Xu Y L, Guo Z S, Chang G Z, Tan X. Yaw wind effect on flutter instability of four typical bridge decks [J]. Wind and Structures, 2013, 17(3): 317-343.
[16] JTG/T D60-01-2004, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2004. JTG/T D60-01-2004, Wind-resistant design specification for highway bridges [S]. Beijing: China Communication Press, 2004. (in Chinese)
[1] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[2] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[3] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[4] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[5] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[6] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[7] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[8] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[9] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[10] 宋帅, 钱永久, 钱聪. 桥梁地震需求中随机参数的重要性分析方法研究[J]. 工程力学, 2018, 35(3): 106-114.
[11] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[12] 叶新一, 王草, 李全旺. 桥梁结构时变可靠度计算的新方法[J]. 工程力学, 2018, 35(11): 86-91.
[13] 王骑, 李郁林, 李志国, 廖海黎. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10): 10-16.
[14] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211.
[15] 岳光强, 马文勇, 刘庆宽, 刘小兵. 风向角对方形断面细长结构气动力特性的影响[J]. 工程力学, 2017, 34(增刊): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日